

Agreement No. CE 60/2017 (EP)

Environmental Team for Tung Chung New Town Extension (East) -Design and Construction

Monthly Environmental Monitoring & Audit Report for September 2019

ERM

2507, 25/F One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong T: 2271 3000 F: 2723 5660 www.erm.com

Agreement No. CE60/2017 (EP) Environmental Team for Tung Chung New Town Extension (East) – Design and Construction

Monthly Environmental Monitoring & Audit Report for September 2019

Revision 1

Document Code: 0445700_Monthly EM&A September 19_v1.docx

Environmental Resources Management

2507, 25/F, One Harbourfront 18 Tak Fung Street Hunghom, Kowloon Hong Kong Telephone: (852) 2271 3000 Facsimile: (852) 2723 5660 E-mail: post.hk@erm.com http://www.erm.com

Client:		Projec	t No	D:		
Civil Engineering and Development Department			0445700			
Summary:		Date:				
		14 O	14 October 2019			
		Appro	ved	by:		
This document presents the Monthly EM&A Report for September 2019 for Environmental Team for Tung Chung New Town Extension (East) – Design and Construction (Agreement No. CE 60/2017			Lif:			
		Craig A. Reid Partner				
1	Monthly EM&A Report (for September 2019)	Var		RC/JT	CAR	14/10/19
Revision	Description	Ву		Checked	Approved	Date
This report has been prepared by Environmental Resources Management the trading name of 'ERM Hong-Kong, Limited', with all reasonable skill, care and diligence within the terms of the Contract with the client, incorporating our General Terms and Conditions of Business and taking account of the resources devoted to it by agreement with the client.		Distribution				
			Internal			AS 18001:2007 2 No. OHS 515956
We disclaim any responsibility to the client and others in respect of any matters outside the scope of the above.		\boxtimes	Pu	blic		BSI
This report is confidential to the client and we accept no responsibility of whatsoever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at their own risk.			Со	onfidentia		9001 : 2008 nte No. FS 32515

Tung Chung New Town Extension

Environmental Certification Sheet for Environmental Permit No. EP-519/2016

Reference Document/Plan

Document/Plan to be Certified:Monthly Environmental Monitoring & Audit Report for
September 2019 (Revision 1)Date of Report:14 October 2019

Reference EP Condition

Environmental Permit Condition:

Condition 3.5

The Permit Holder shall submit 4 hard copies and 1 electronic copy of Monthly EM&A Reports for the construction stage of the Project to the Director, within 2 weeks after the end of the reporting month. The monthly EM&A Reports shall include an executive summary of all environmental audit results, together with actions taken in the event of non-compliance (exceedances) of the environmental quality performance limits (Action and Limit Levels), complaints received and emergency events relating to violation of environmental legislation (such as illegal dumping and landfilling). The submissions shall be certified by the ET Leader and verified by the IEC as having complied with the requirements as set out in the updated EM&A Manual before submission to the Director. Additional copies of the Monthly EM&A Reports shall be provided upon request by the Director.

ET Certification

I hereby certify that the above referenced document/plan complies with the above referenced condition of EP-519/2016

Jovy Tam Environmental Team Leader

la

Date: 14 October 2019

OUR REF 198377-0173

YOUR REF

DATE 14 October 2019

Sustainable Lantau Office Civil Engineering and Development Department 13/F, North Point Government Offices 333 Java Road, North Point Hong Kong

For the attention of Mr. S.K. LO / Mr. K.T. WO

Dear Sir,

Agreement No. CE 59/2017 (EP) Independent Environmental Checker for Tung Chung New Town Extension – Investigation

Monthly Environmental Monitoring & Audit Report for September 2019

We refer to the Monthly Environmental Monitoring & Audit Report for September 2019 for Tung Chung New Town Extension (East) dated 14 October 2019 and certified by the Environmental Team Leader on 14 October 2019. Please note the submission is hereby verified, in accordance with the requirement stipulated in Condition 3.5 of EP-519/2016.

Should you have any query, please feel free to contact the undersigned at 2608 7314 (<u>chuawo@bv.com</u>) or our Ivan Ting at 9222 9490 (<u>iec.tcnte@gmail.com</u>).

Yours faithfully, for and on behalf of BLACK & VEATCH HONG KONG LIMITED

Ull

MANUEL CHUA INDEPENDENT ENVIRONMENTAL CHECKER

cc: ET Leader – ERM (Attn: Mr. Jovy Tam) [by Email: <u>jovy.tam@erm.com</u>] Project Manager / TCE – AECOM (Attn: Mr. Chris Cheung) [by Email: <u>sreg1@tce-aecom.com</u>]

Member of the Association of Consulting Engineer of Hong Kong

	ABBREVIATIONS	1
	EXECUTIVE SUMMARY	1
1	INTRODUCTION	1
1.1	BACKGROUND	1
1.2	SCOPE OF THE EM&A REPORT	2
1.3	ORGANIZATION STRUCTURE	2
1.4	SUMMARY OF CONSTRUCTION WORKS	3
1.5	SUMMARY OF EM&A PROGRAMME REQUIREMENTS	5
1.6	STATUS OF STATUTORY ENVIRONMENTAL COMPLIANCE WITH THE	
	Environmental Permit	7
1.7	STATUS OF OTHER STATUTORY ENVIRONMENTAL REQUIREMENTS	7
2	EM&A RESULTS FOR TUNG CHUNG EAST	8
2.1	AIR QUALITY	8
2.2	NOISE MONITORING	9
2.3	WATER QUALITY MONITORING	12
2.4	SOFT SHORE ECOLOGICAL MONITORING	17
2.5	EM&A SITE INSPECTION	20
2.6	WASTE MANAGEMENT STATUS	21
2.7	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	22
2.8	SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMAN Limit	CE 22
2.9	SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS	22
3	FUTURE KEY ISSUES	23
3.1	CONSTRUCTION PROGRAMME FOR THE COMING MONTH	23
3.2	MONITORING SCHEDULE FOR THE COMING MONTH	25
4	CONCLUSION AND RECOMMENDATION	26

ANNEXES

ANNEX A	PROJECT ORGANISATION
ANNEX B	ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE
ANNEX C	STATUS OF SUBMISSIONS AND IMPLEMENTATION STATUS OF MITIGATION MEASURES UNDER EP
ANNEX D	STATUS OF STATUTORY ENVIRONMENTAL REQUIREMENTS
ANNEX E	AIR QUALITY
ANNEX E1	CALIBRATION CERTIFICATES
ANNEX E2	MONITORING SCHEDULE
ANNEX E3	Monitoring Results
ANNEX E4	EVENT AND ACTION PLAN
ANNEX F	NOISE
ANNEX F1	CALIBRATION CERTIFICATES
ANNEX F2	MONITORING SCHEDULE
ANNEX F3	Monitoring Results
ANNEX F4	EVENT AND ACTION PLAN
ANNEX G	WATER QUALITY
ANNEX G1	CALIBRATION CERTIFICATES
ANNEX G2	MONITORING SCHEDULE
ANNEX G3	MONITORING RESULTS
ANNEX G4	EVENT AND ACTION PLAN
ANNEX H	SOFT SHORE ECOLOGY
ANNEX H1	MONITORING SCHEDULE
ANNEX H2	MONITORING RESULTS
ANNEX H3	EVENT AND ACTION PLAN
ANNEX I	CUMULATIVE STATISTICS ON EXCEEDANCES, ENVIRONMENTAL
	COMPLAINTS, NOTIFICATION OF SUMMONS AND STATUS OF
	PROSECUTIONS
ANNEX J	MONITORING SCHEDULE FOR THE NEXT REPORTING PERIOD

ABBREVIATIONS

C&D	Construction and Demolition
САР	Contamination Assessment Plan
CEDD	Civil Engineering and Development Department
CWD	Chinese White Dolphin
DCM	Deep Cement Mixing
DO	Dissolved Oxygen
EIA	Environmental Impact Assessment
EIAO	Environmental Impact Assessment Ordinance
EIS	Ecologically Important Stream
EM&A	Environmental Monitoring and Audit
EP	Environmental Permit
EPD	Environmental Protection Department
ER	Engineer's Representative
ERM	ERM-Hong Kong, Limited
ET	Environmental Team
HVS	High Volume Sampler
IEC	Independent Environmental Checker
PDA	Planned Development Area
PME	Powered Mechanical Equipment
QPME	Quality Powered Mechanical Equipment
RAP	Remediation Action Plan
RR	Remediation Report
RTTM	Real Time Tracking and Monitoring
SS	Suspended Solid
ТСВ	Tung Chung Bay
TCE	Tung Chung East
TCNTE	Tung Chung New Town Extension
TCW	Tung Chung West
The Project	Tung Chung New Town Extension (East)
THW	Tai Ho Wan
TSP	Total Suspended Particulate
	Updated Environmental Monitoring and Audit Manual
Updated	for Tung Chung New Town Extension prepared by ERM
EM&A Manual	under Agreement No. CE 60/2017 (EP) and deposited to
	EPD under Environmental Permit No. EP-519/2016

EXECUTIVE SUMMARY

Tung Chung New Town Extension (TCNTE) is one of the major initiatives under the Government's multi-pronged approach to increase land supply to meet Hong Kong's medium- to long-term needs for housing, economic and social developments. The Environmental Impact Assessment (EIA) Report for TCNTE (Register No. AEIAR-196/2016) was approved on 8 April 2016 and the Environmental Permit (EP) No. EP-519/2016, covering the construction and operation of TCNTE, was granted on 9 August 2016. The EIA Report and EP cover both Tung Chung East (TCE) and Tung Chung West (TCW). ERM-Hong Kong, Limited (ERM) is commissioned to undertake the role of Environmental Team (ET) for the construction and operation of TCE Project ("the Project") in accordance with the requirements specified in the EP, Updated Environmental Monitoring and Audit (EM&A) Manual, EIA Report of the TCNTE project and other relevant statutory requirements. The construction of the Project commenced on 9 July 2018.

This is the Monthly EM&A report presenting the EM&A works carried out during the period from 1 to 30 September 2019 for the Project in accordance with the Updated EM&A Manual.

A summary of monitoring and audit activities conducted in the reporting period is listed below:

Air Quality Monitoring	6 sessions
Noise Monitoring	6 sessions
Water Quality Monitoring	13 sessions
Soft Shore Ecological Monitoring	1 session
Environmental Site Inspection	4 sessions
Environmental Management Meeting	1 session

Environmental auditing works, including weekly site inspections of construction works conducted by the ET, audit of works vessels, audit of implementation of Dolphin Watching Plan, Works Vessel Travel Route Plan, Silt Curtain Deployment Plan, Spill Response Plan and Waste Management Plan were conducted in the reporting period. Based on the audit results and the observation for the reporting period, environmental pollution control and mitigation measures for the Project were properly implemented.

Breaches of Action and Limit Levels for Air Quality

No exceedance of Action and Limit Levels was recorded for construction air quality monitoring in the reporting period.

Breaches of Action and Limit Levels for Noise

No exceedance of Action and Limit Levels was recorded for construction noise monitoring in the reporting period.

Breaches of Action and Limit Levels for Water Quality

Dissolved Oxygen (DO) and Suspended Solids (SS) exceedances were recorded during the reporting period. Relevant investigations and follow-up actions were conducted according to the EM&A programme. The exceedances were considered not related to this Project after investigations.

Soft Shore Ecological Monitoring

Based on the impact monitoring conducted during the reporting period, there was no evidence showing any significant change in intertidal communities when compared against the data obtained during baseline monitoring. The ET will continue to observe the change in density or the distribution pattern of horseshoe crab, seagrass and intertidal soft shore communities taking into account natural fluctuation in respect of the occurrence and distribution pattern.

Environmental Complaints, Non-compliance & Summons

There was no environmental complaint, notification of summons or prosecution recorded in the reporting period.

Reporting Change

There was no reporting change in the reporting period.

Key Issues For The Coming Month

Potential environmental impacts arising from the upcoming construction activities in the next reporting period of October 2019 are mainly associated with noise from barge and plant operation during normal working hours and restricted hours, elevation in SS due to sediment loss from laying of sand blanket and marine filling works, disturbance to Chinese White Dolphin (CWD) during marine works, handling and storage of C&D materials generated from construction activities, efficiency of wastewater and drainage management, efficiency of flood management for rainy season and dust emission. The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures. The ET will also recommend to the Contractor about the environmental toolbox topics on the abovementioned key issues for the coming month.

1 INTRODUCTION

1.1 BACKGROUND

Tung Chung New Town Extension (TCNTE) is one of the major initiatives under the Government's multi-pronged approach to increase land supply to meet Hong Kong's medium- to long-term needs for housing, economic and social developments. The Environmental Impact Assessment (EIA) Report for TCNTE (Register No. AEIAR-196/2016) was approved on 8 April 2016 and the Environmental Permit (EP) No. EP-519/2016, covering the construction and operation of TCNTE, was granted on 9 August 2016. The EIA Report and EP cover both Tung Chung East (TCE) and Tung Chung West (TCW).

ERM-Hong Kong, Limited (ERM) is commissioned to undertake the role of Environmental Team (ET) for the construction and operation of TCE Project ("the Project") in accordance with the requirements specified in the EP, Updated Environmental Monitoring and Audit (EM&A) Manual ⁽¹⁾, EIA Report of the TCNTE project ⁽²⁾ and other relevant statutory requirements.

The TCE Project ("the Project") comprises the following elements:

- 1. Reclamation of the seabed by a non-dredged method at TCE to form a total of about 130 hectares of land;
- 2. Construction of about 4.9 kilometres of seawalls, with an eco-shoreline, three drainage box culvert outfalls, three circulation drains and a seawater intake at TCE;
- 3. Construction of a 470-metre (m) long multi-cell drainage box culvert at TCE;
- 4. Provision of infrastructure for Tung Chung Area 58, including construction of a single two-lane road with a footpath of about 270 m in length and the associated utility works;
- 5. Construction of roads, footbridges, drainage, sewerage, waterworks, sewage and salt water pumping stations, fresh water and salt water service reservoirs, and flood protection measures;
- 6. Provision of new cycle tracks connecting to the existing cycle track network;
- 7. Landscaping, reprovisioning and ancillary works; and

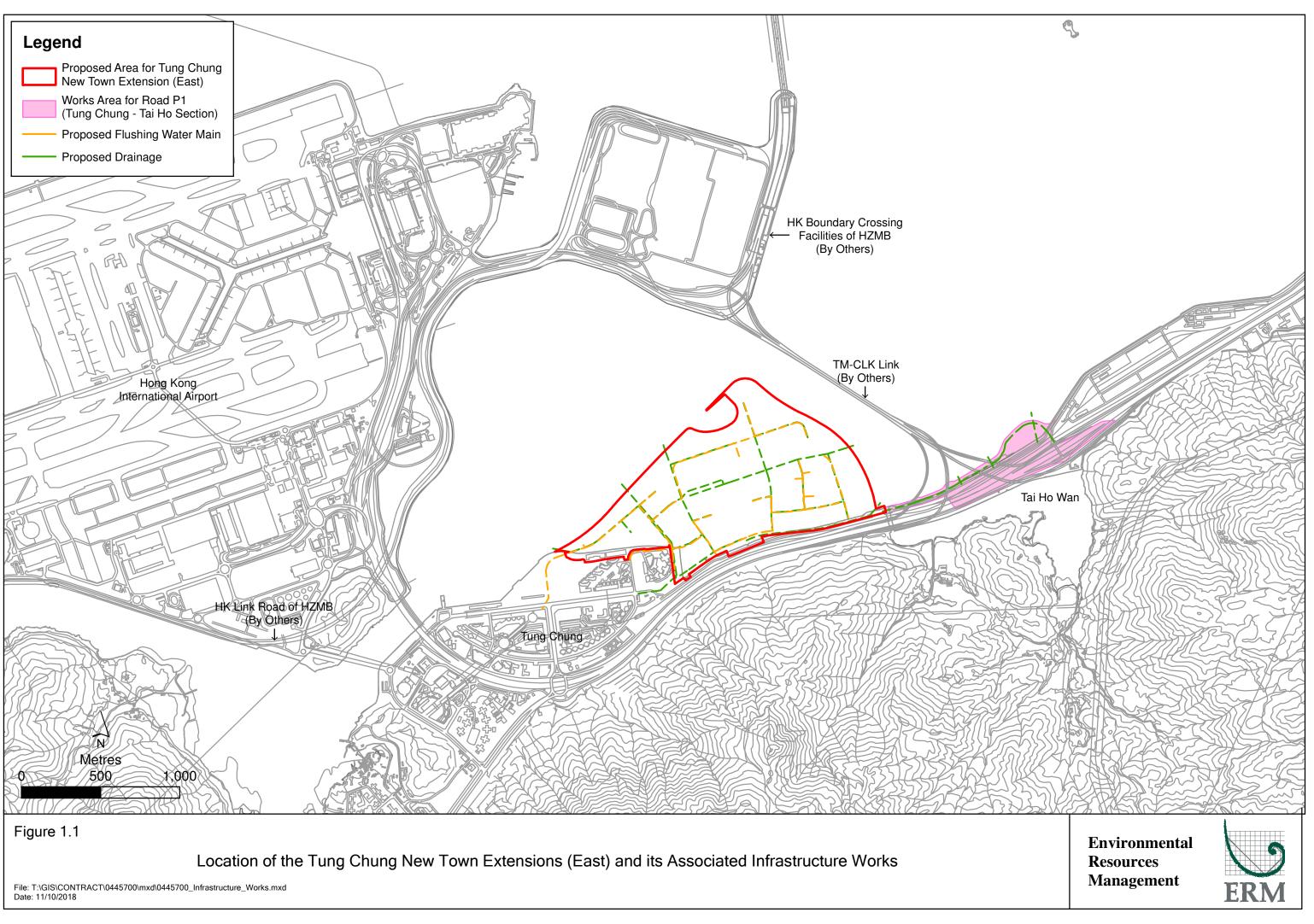
ERM (2018a). Updated Environmental Monitoring and Audit Manual for Tung Chung New Town Extension. Deposited to EPD under EP-519/2016

⁽²⁾ Arup (2015). Environmental Impact Assessment Report for Tung Chung New Town Extension. Deposited to EPD under Register No. AEIAR-196/2016

8. Implementation of environmental mitigation measures and environmental monitoring and audit works.

The location of the Project, including the associated infrastructure works, is shown in *Figure 1.1*. The construction and the reclamation related marine works of the Project commenced on 9 and 13 July 2018, respectively.

1.2 SCOPE OF THE EM&A REPORT


This is the Monthly EM&A Report for the Project which summarises the key findings of the EM&A programme during the reporting period from 1 to 30 September 2019 for the construction works.

1.3 ORGANIZATION STRUCTURE

The organization structure of the Project is shown in *Annex A*. The key personnel contact names and contact details are summarized in *Table 1.1* below.

Table 1.1Contact Information of Key Personnel

Party	Position	Name	Telephone
Civil Engineering and	Senior Engineer	Lo Siu Keung	2231 4426
Development	Marine Conservation	Wo King Tai	3894 9707
Department	Officer		
Engineer's	Principal Resident	Frankie Fan	3894 9403
Representative	Engineer		
(ER) (AECOM Asia Company	Chief Resident Engineer	Dennis Leung	3894 9404
Limited)	Senior Resident Engineer	Chris Cheung	3894 9605
	Resident Engineer	Vincent Leung	3894 9645
	Senior Inspector of Works	C K Liu	3894 9733
Environmental Team	ET Leader	Jovy Tam	3894 9507
(ET) (ERM-Hong Kong, Limited)	Deputy ET Leader	Raymond Chow	3894 9504
Independent	IEC	Manuel Chua	3894 9501
Environmental Checker (IEC) (Black & Veatch Hong Kong Limited)	Deputy IEC	Ivan Ting	3894 9502
Contractor (Contract No.	Site Agent	Keith Tse	9383 6173
NL/2017/03 TCNTE - Reclamation and	Construction Team Leader	Lee Wai Man	9481 6024
Advance Works)	Environmental Officer	Edward Tam	9287 8270

Party	Position	Name	Telephone
(Build King - SCT Joint	24-hour Complaint	-	9862 2910
Venture)	Hotline		

1.4 SUMMARY OF CONSTRUCTION WORKS

As informed by the Contractor, details of the major works carried out in this reporting period are listed below:

Activities	Key Issues	Key Mitigation Measures
Land-based Works		
 Roads, drainage, sewerage works and backfilling work at Area 58 (near Man Tung Road) Land-based ground investigation works Land DCM works Placing of sorted public fill Installation of monitoring instrumentation 	 Dust emission Handling and storage of C&D materials generated from construction activities Noise from plant operation Emission of dark smoke from PMEs Efficiency of wastewater and drainage management Efficiency of flood management for rainy season 	 Good site practices Regular water spraying on stockpiles, unpaved haul road and land filling area Sorting and reuse of C&E materials as far as practicable Use of QPME and noise barrier/acoustic mat Regular maintenance of PMEs Implementation of wastewater and drainage management
Marine-based Works		0
 Laying of geotextile and sand blanket for reclamation works and DCM works Placing of sorted public fill DCM works Marine ground investigation works 	 Elevation in impact on Water Quality due to sediment loss from sand blanket laying and marine filling works Potential surface runoff Potential filling material drop from barges Disturbance to Chinese White Dolphin Noise from marine vessels and plant operation during normal working hours or restricted hours Dust emission during storage and transfer of sand/ sorted public fill Emission of dark smoke from marine vessel 	 Provision of perimeter si curtain Provision of a leading seawall of at least 200m before marine filling works Regular cleaning of accumulated sand/fill materials at the edge of the barges Implementation of Dolphin Watching for the marine-based works Strictly follow requirement under CNP for the use of PMEs and works within restricted period Use of acoustic mat and other noise mitigation measures when necessar Regular water spraying and provide tarpaulin sheets coverage on stockpiles Regular maintenance of engines and mechanical equipment

The environmental mitigation implementation schedule is presented in *Annex B*.

1.5 SUMMARY OF EM&A PROGRAMME REQUIREMENTS

The status for all environmental aspects are presented in *Table 1.3*. The EM&A requirements remained unchanged during the reporting period.

Table 1.3Summary of Status for the Environmental Aspects under the Updated EM&A
Manual

Parameters	Status
Air Quality	
Baseline Monitoring	The results of baseline air quality monitoring for TCE were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.4
Impact Monitoring	On-going for TCE, monitoring conducted three times every six days
Noise	
Baseline Monitoring	The results of baseline noise monitoring for TCE were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.4
Impact Monitoring	On-going for TCE, monitoring conducted once per week
Impact Monitoring for Road Traffic Noise during Operational Phase	To be conducted during operational phase
Fixed Noise Commissioning Test	To be implemented by the Contractor before operation of TCNTE
Water Quality	
Baseline Monitoring	The results of baseline water quality monitoring for TCE were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.4
Impact Monitoring	On-going for TCE, monitoring conducted three times per week
Waste Management	
Waste Monitoring	On-going
Land Contamination	
Contamination Assessment Plan (CAP), Remediation Action Plan (RAP) and Remediation Report (RR)	Pending environmental site investigation and lab testing works for TCW
Ecology	
Monitoring for Compensation Woodland	To be conducted when compensation woodland are planted
Monitoring for Emergent Plant inside the future River Park	To be conducted in the future River Park
Monitoring for Translocated Amphibians of Conservation Importance	To be conducted after translocation

Parameters	Status
Monitoring for Preserved/Transplanted Plant	To be conducted after preservation/ transplantation
Species of Conservation Importance	
Monitoring for Tung Chung Stream EIS and Wong Lung Hang EIS	To be conducted under TCW
Eco-shoreline Monitoring	To be conducted when eco-shoreline at TCE PDA and Road P1 is built
Tung Chung Bay and Tai Ho Wan Baseline Monitoring	The results of baseline soft shore ecological monitoring at Tung Chung Bay and Tai Ho Wan were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.4
Tung Chung Bay and Tai Ho Wan Impact Monitoring	On-going for TCE, monitoring conducted quarterly
Landscape and Visual	
Baseline Monitoring	The results of baseline landscape and visual monitoring were reported in Baseline Monitoring Report and submitted to EPD under EP Condition 3.4
Site Environmental Audit	
Regular Site Inspection	On-going
Dolphin Watching Plan implementation measures	Under implementation by the Contractor
Works Vessel Travel Route Plan implementation measures	Under implementation by the Contractor
Silt Curtain Deployment Plan implementation measures	Under implementation by the Contractor
Spill Response Plan implementation measures	Under implementation by the Contractor
Waste Management Plan implementation measures	Under implementation by the Contractor
Complaint Hotline and Email Channel	Under implementation by the Contractor
Environmental Log Book	On-going

Taking into account the construction works, impact monitoring of air quality, noise, water quality, soft shore ecological monitoring and waste management were carried out in the reporting period. The monitoring schedule of air quality, noise, water quality monitoring and soft shore ecological monitoring are provided in *Annex E2*, *Annex F2*, *Annex G2* and *Annex H1*, respectively.

The EM&A programme also involved environmental site inspections and related auditing conducted by the ET for checking the implementation of the required environmental mitigation measures recommended in the approved EIA Report and relevant EP submissions, including Dolphin Watching Plan, Works Vessel Travel Route Plan, Silt Curtain Deployment Plan, Spill Response Plan and Waste Management Plan.

To promote the environmental awareness and enhance the environmental performance of the contractors, environmental trainings and regular environmental management meetings were conducted during the reporting period, which are summarized as below:

- One (1) environmental management committee meeting was held with the Contractor, ER, ET, IEC and CEDD on 19 September 2019; and
- Environmental toolbox trainings on response for dolphin observation, chemical waste storage, dust management, requirement on Works Vessel Travel Route Plan and NRMM label on 6, 11, 18, 20 and 25 September 2019.

1.6 STATUS OF STATUTORY ENVIRONMENTAL COMPLIANCE WITH THE ENVIRONMENTAL PERMIT

The status of statutory environmental compliance with the EP conditions under the EIAO, submission status under the EP and implementation status of mitigation measures are presented in *Annex C*.

1.7 STATUS OF OTHER STATUTORY ENVIRONMENTAL REQUIREMENTS

The environmental licenses and permits, including environmental permit, waste discharge license, registration as chemical waste producer and construction noise permit, which are valid in the reporting period are presented in *Annex D*. No non-compliance with environmental statutory requirements was recorded.

2 EM&A RESULTS FOR TUNG CHUNG EAST

The EM&A programme for the Project required environmental monitoring for air quality, noise, water quality and marine ecology as well as environmental site inspections for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts. The EM&A requirements and related findings for each component are summarized in the following sections.

2.1 AIR QUALITY

2.1.1 Monitoring Requirements and Equipment

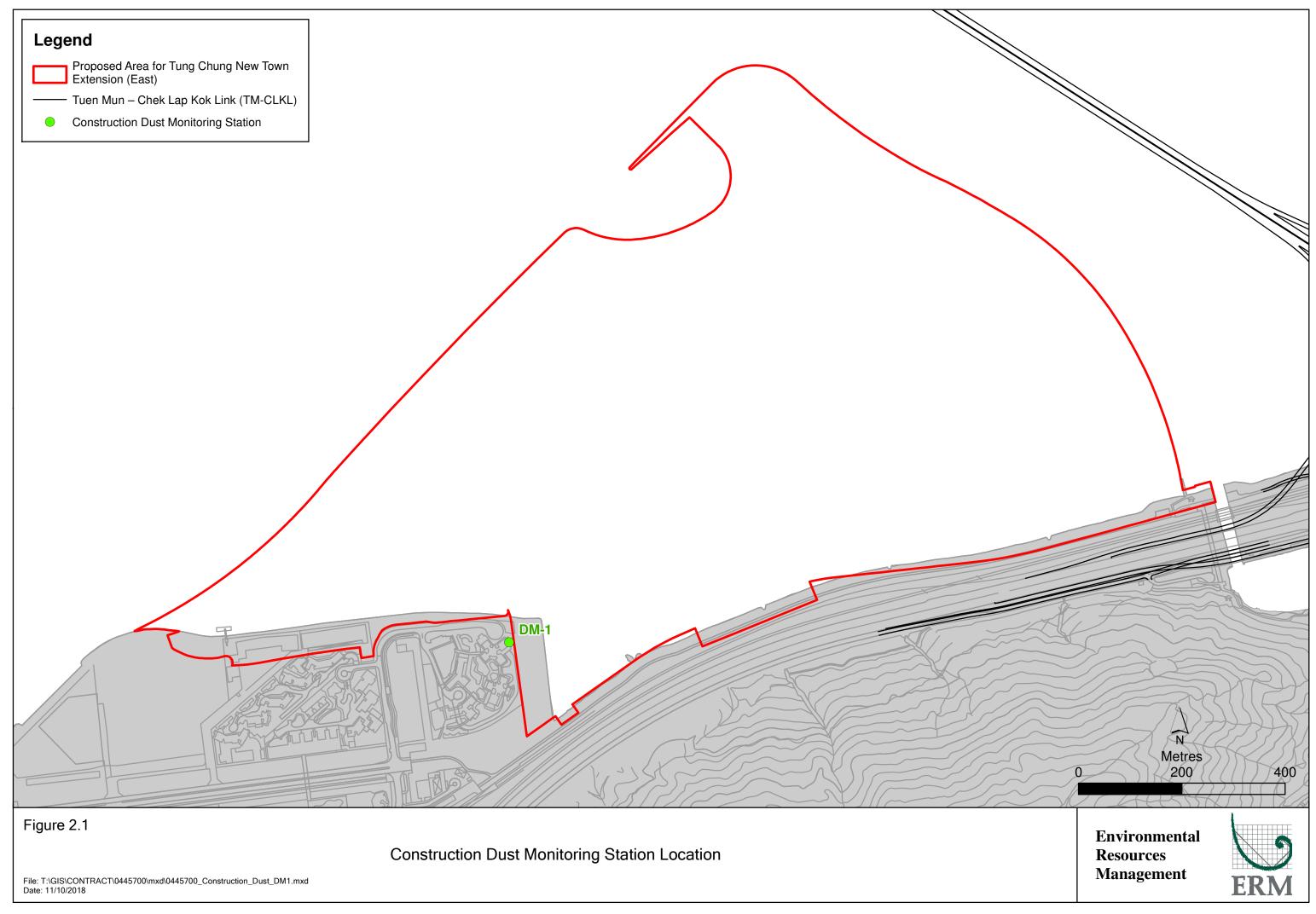

According to the Updated EM&A Manual of the Project, impact air quality monitoring in terms of 1-hour Total Suspended Particulate (TSP) was conducted three (3) times every six (6) days when the highest dust impact was expected. The Action and Limit Levels of the air quality monitoring is provided in *Table 2.1* below.

Table 2.1Action and Limit Levels for 1-hour TSP

Location	Action Level, µg/m ³	Limit Level, µg/m ³
Monitoring station for Tung	279	500
Chung East		

Portable direct reading dust meters were used to measure 1-hour TSP levels in undertaking the air quality monitoring for the Project. The proposed use of portable direct reading dust meters was submitted to IEC and obtained agreement from the IEC as stated in Section 5.5 of the Updated EM&A Manual. With the use of direct reading dust meter, it can allow prompt and direct results for the EM&A reporting and the implementation of the event and action plan. The portable direct reading dust meter would be calibrated every year against High Volume Sampler (HVS) to check the validity and accuracy of the results measured by direct reading method.

The monitoring location and equipment used in the impact air quality monitoring programme are summarized in *Table 2.2* and illustrated in *Figure 2.1*. Copies of the calibration certificates for the equipment are presented in *Annex E1*, which showed that the portable direct reading dust meter is capable of providing comparable results with that provided by a HVS.

Table 2.2Air Quality Monitoring Details

Monitoring	Location	Parameter	Frequency	Monitoring	Equipment
Station			and Duration	Dates	
DM-1	Tung Chung	1-hour TSP	Three times	2, 7, 13, 19, 25	1-hour TSP
	Area 56 -		per six days	and 30	Dust Meter
	Ying Tung		during the	September	SIBATA LD-
	Estate		construction	2019	3B (S/N:
			period of the		235780
			Project		

Remark:

It should be noted that impact monitoring at other construction dust monitoring locations at TCE as stated in the Updated EM&A Manual will commence after the flat intake (for Monitoring Stations DM-2, DM-3 and DM-4).

2.1.2 Monitoring Schedule for the Reporting Month

The schedule for air quality monitoring during the reporting period is provided in *Annex E2*.

2.1.3 Results and Observations

The monitoring results for 1-hour TSP are summarized in *Table 2.3*. The monitoring data and the graphical presentation are provided in *Annex E3*.

Table 2.3Summary of 1-hour TSP Monitoring Results in the Reporting Period

Monitoring Station	Average (µg/m³)	Range (µg/m³)	Action Level (μg/m³)	Limit Level (µg/m³)
DM-1	61	20-139	279	500

The major dust sources in the reporting period included haul road traffic, unloading of sand/fill material, filling works and operation of marine vessels under the Project as well as nearby traffic emissions.

No exceedance of Action and Limit Levels was recorded for construction air quality monitoring in the reporting period. No action is thus required to be undertaken in accordance with the Event and Action Plan presented in *Annex E4*.

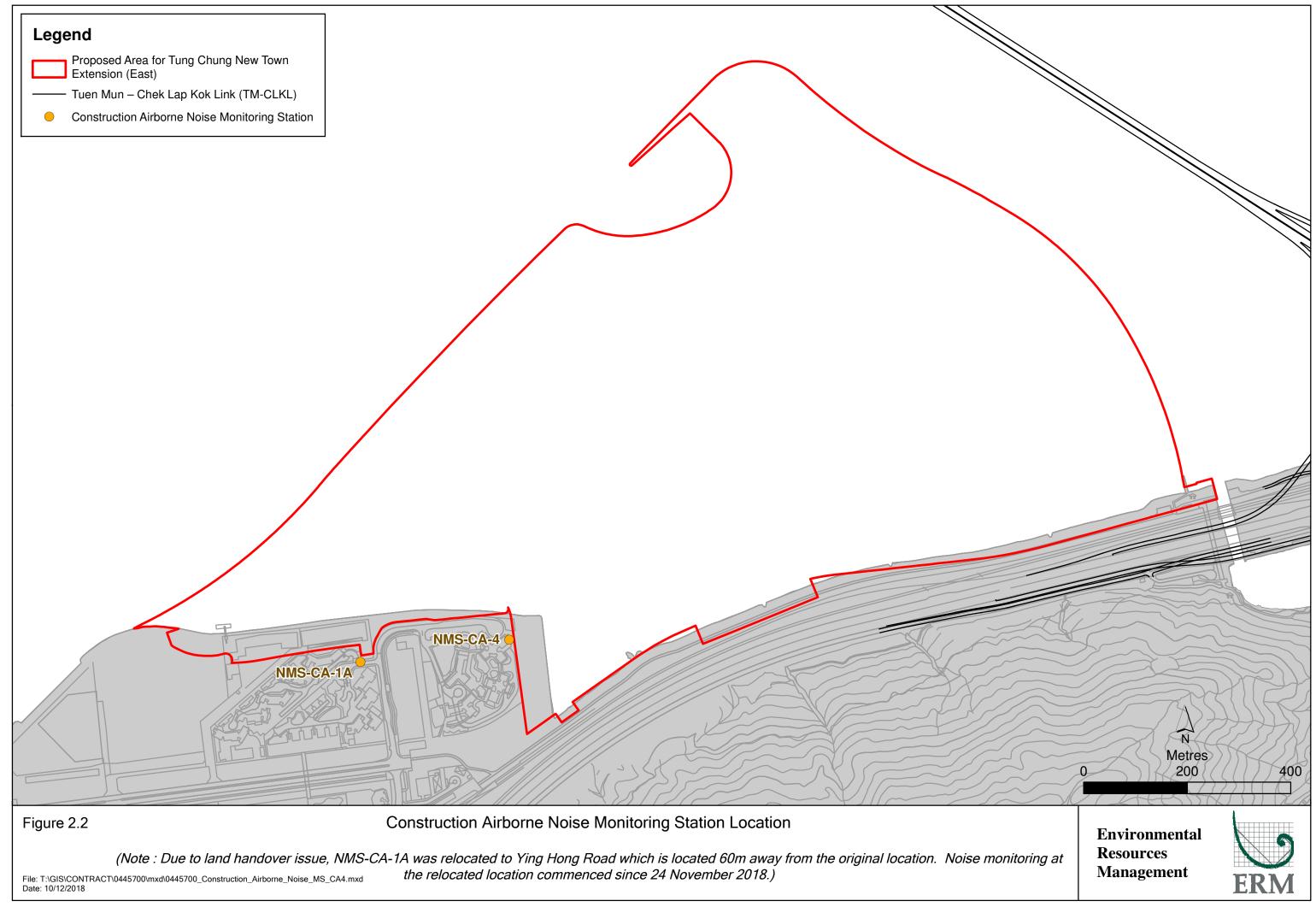
2.2 NOISE MONITORING

2.2.1 Monitoring Requirements and Equipment

According to the Updated EM&A Manual of the Project, impact noise monitoring was conducted once per week during the construction phase of the Project. The Action and Limit Level for construction noise of the Project is provided in *Table 2.4* below.

Time Period	Action Level	Limit Level
0700 - 1900 hours on normal	When one documented	75 dB(A) *
weekdays	complaint is received	75 UD(A)

Notes:


Limit level is exceeded when $L_{eq} \ge 75 \text{ dB}(A)$. If works are to be carried out during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

* Reduce to 70 dB (A) for schools and 65 dB (A) during school examination periods.

Noise monitoring was performed using sound level meter at the designated monitoring stations NMS-CA-1A ⁽¹⁾ ⁽²⁾ and NMS-CA-4 (*Figure 2.2; Table 2.5*) in accordance with the requirements stipulated in the Updated EM&A Manual. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Details of the deployed equipment are provided in *Table 2.5*. Copies of the calibration certificates for the equipment are presented in *Annex F1*.

⁽¹⁾ Impact monitoring at monitoring station NMS-CA-1A commenced on 19 September 2018 in view of the close vicinity of the construction works near the residential area at Century Link.

⁽²⁾ Due to land handover issue, NMS-CA-1A was relocated to Ying Hong Road which is located 60m away from the original location. Proposal on the relocation of NMS-CA-1A was approved by IEC on 23 November 2018. Noise monitoring at the relocated location commenced since 24 November 2018.

Table 2.5Noise Monitoring Details

Monitoring	Location	Parameter	Frequency	Monitoring	Equipment
Station (a)			and Duration	Dates	
NMS-CA-1A	Residential	30-minute	Once per	2, 7, 13, 19, 25	Sound Level
(b)	premise in	measurement	week for 30	and 30	Meter: Rion
	Tung Chung	between 0700	mins during	September	NL-52 (S/N:
	East -	and 1900 on	the	2019	00643049)
	Century	normal	construction		
	Link/Ying	weekdays	period of the		Acoustic
	Hong Road (c)	(Monday to	Project		Calibrator:
	0	Saturday). L _{eq} ,			LARSON
NMS-CA-4	Residential	L ₁₀ and L ₉₀			DAVIS
	premise in the	would be			CAL200
	reclamation	recorded.			(S/N: 11333)
	area next to				
	Tung Chung				
	East – Ying				
	Tung Estate				
	0				

- (a) It should be noted that impact monitoring at other construction noise monitoring locations at TCE as stated in the Updated EM&A Manual will commence after the flat intake of residential premise in TCE (for Monitoring Station NMS-CA-1) and operation of
- schools (for Monitoring Stations NMS-CA-2 and NMS-CA-3).(b) Impact monitoring at monitoring station NMS-CA-1A commenced on 19 September 2018 in view of the close vicinity of the construction works near the residential area at Century Link.
- (c) Due to land handover issue, NMS-CA-1A was relocated to Ying Hong Road which is located 60m away from the original location. Proposal on the relocation of NMS-CA-1A was approved by IEC on 23 November 2018. Noise monitoring at the relocated location commenced since 24 November 2018.

2.2.2 Monitoring Schedule for the Reporting Month

The schedule for noise monitoring during the reporting period is provided in *Annex F2*.

2.2.3 *Results and Observations*

Results for noise monitoring are summarized in *Table 2.6*. The monitoring data and the graphical presentation are provided in *Annex F3*.

Table 2.6Summary of Construction Noise Monitoring Results in the Reporting Period

Monitoring Station	Average , dB(A), L _{eq (30mins)}	Range, dB(A), L _{eq (30mins)}	Limit Level, dB(A), L _{eq (30mins)}
NMS-CA-1A	64.0	61.8-64.6	75
NMS-CA-4	64.9	62.9-67.4	75

Major noise sources during the noise monitoring included noise from barge and plant operation, DCM works, craning, haul road traffic and nearby traffic noise and aircraft noise.

No exceedance of Action and Limit Levels was recorded for construction noise monitoring in the reporting period. No action is thus required to be

undertaken in accordance with the Event and Action Plan presented in *Annex F*4.

2.3 WATER QUALITY MONITORING

2.3.1 Monitoring Requirements and Equipment

Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. Impact water quality monitoring was undertaken three days per week since the commencement of marine works during the reporting period in accordance with the Updated EM&A Manual. Each impact water quality monitoring was scheduled such that the interval between two impact water quality monitoring was more than 36 hours to record representative water quality data throughout the week during the marine works.

Two (2) replicate *in-situ* measurements and samples were collected at each monitored water depth of each designated monitoring stations. Dissolved Oxygen (DO), pH value, salinity, temperature and turbidity were measured *in-situ* whereas the level of suspended solids (SS) were determined by ALS Technichem (HK) Pty Ltd which is a HOKLAS accredited laboratory.

The Action and Limit Levels of the water quality monitoring are provided in *Table 2.7*.

Parameters	Action Level	Limit Level
DO in mg/L	Surface and Middle	Surface and Middle
(Surface, Middle & Bottom)	5.9 mg/L ^[1]	4 mg/L ^[1]
	Bottom	Bottom
	5.6 mg/L	2 mg/L
SS in mg/L (Depth-averaged)	13.5 mg/L	23.5 mg/L
	or	or
	station at the same tide of the	130% of upstream control station at the same tide of the same day, whichever is higher. ^[2]
Turbidity in NTU (Depth-	17.1 NTU	23.5 NTU
averaged)	or	or
	120% of upstream control	130% of upstream control
	station at the same tide of the	station at the same tide of the
	same day, whichever is higher. [2]	same day, whichever is higher. [2]

Table 2.7Action and Limit Levels for Water Quality

Notes:

(1) For DO, non-compliance occurs when monitoring results is lower than the limits.

(2) For SS and Turbidity, non-compliance occurs when monitoring results is larger than the limits

The locations of the monitoring stations under the Project are shown in *Figure* 2.3 and *Table* 2.8.

Monitoring Station	Description	Coor	dinates		Parameters (a)	Frequency	Monitoring Dates ^(b)	Depth
		Easting	Northing					
TCE-WQM1	Near Airport Channel	811838	817341	•	Dissolved Oxygen (DO) (mg/L and % saturation) Temperature (°C)	Impact monitoring: 3 days per week, at mid-flood and mid-ebb	2, 4, 6, 9, 11, 13, 16, 18, 20, 23, 25, 27 and 30 September 2019	3 water depths: 1m below sea surface, mid- depth and 1m
TCE-WQM2a	Marine Park 1	814439	819879	•	Turbidity (NTU)	tides during the		above seabed. If
TCE-WQM2b	Marine Park 2	814439	821905	•	Salinity (ppt) pH	construction period of the		the water depth is less
TCE-WQM3A	Outlet of Tai Ho Wan	814705	817859	•	Water depth (m)	Project		than 3m, mid-depth
TCE-WQM4 TCE-C1	HKBCF Control Station - Outside Airport Channel	813344 804247	818849 815620	•	Suspended Solid (SS) (mg/L)			sampling only. If water depth less than 6m, mid-depth may be
TCE-C2	Control Station - Sunny Bay	819460	821473					omitted
	Notes: (a) In additic including mo and any spec (b) Water qu	onitoring l cial phenor ality moni	ocation / po mena or wo toring on 2	osi rk Sej	d parameters, of tion, time, water underway at the ptember 2019 du Hong Kong Obs	r depth, tidal st e construction s uring mid-flood	ages, weather site.	conditions

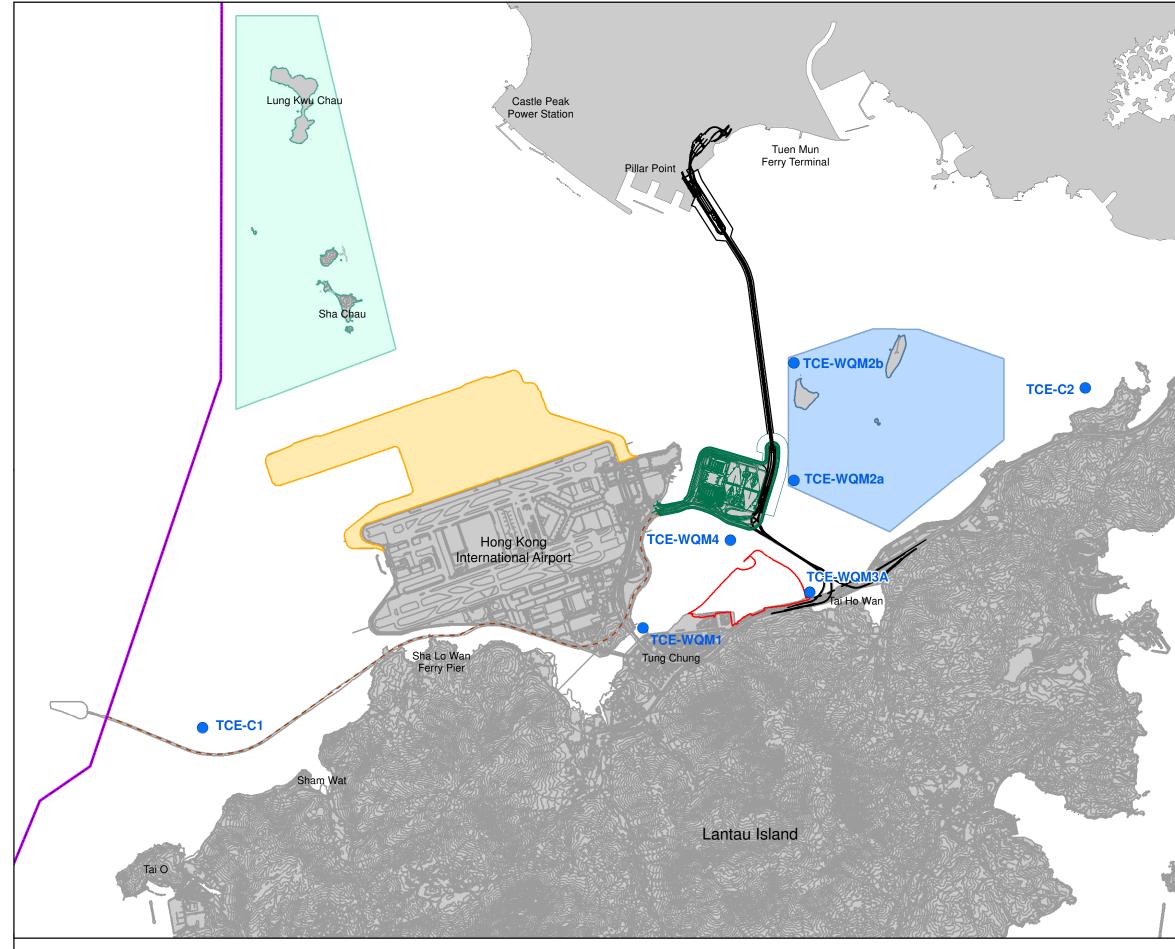

Table 2.8Locations of Impact Water Quality Monitoring Stations and the
Corresponding Monitoring Requirements

Table 2.9 summarizes the equipment used in the impact water quality monitoring works. Copies of the calibration certificates are attached in *Annex G*1.

Table 2.9Water Quality Monitoring Equipment

Equipment	Model
Water Sampler	Kahlsico Water Samplers
Multi-parameter Water	YSI ProDSS (S/N: 15M100005; S/N: 17E100747; S/N:
Quality System (measurement	17H105557; S/N: 18A104824)
of DO, Temperature,	YSI 6920 v2 (S/N: 0001C6A7; S/N: 00019CB2)
Turbidity, Salinity and pH)	
(Note 1)	

Note 1: One multi-parameter water quality system was used at each monitoring station during each survey day.

Figure 2.3

Water Quality Monitoring Locations

File: T:\GIS\CONTRACT\0445700\mxd\0445700_WQMS.mxd Date: 23/10/2018

2.3.2 Monitoring Schedule for the Reporting Month

The schedule for water quality monitoring during the reporting period is provided in *Annex G2*.

2.3.3 *Results and Observations*

A total of 13 monitoring events for impact water quality monitoring were conducted at all designated monitoring stations during the reporting period. Monitoring event on 2 September 2019 during mid-flood tide was canceled due to issue of Strong Wind Signal No.3 by Hong Kong Observatory. Impact water quality monitoring results and graphical presentations are provided in *Annex G3*.

Action and limit level exceedances were recorded for water quality impact monitoring in the reporting period and the event and action plan (*Annex G4*) was undertaken. Investigations on the action and limit level exceedances were conducted and summarized in *Table 2.10* below.

Date	Tide	Parameter	Station	Type	Justification
2 September 2019	ME	DO (S&M)	TCE-WQM1	Action	(d) (f)
	ME	DO (S&M)	TCE-WQM2a	Action	
	ME	DO (S&M)	TCE-WQM2b	Action	
	ME	DO (S&M)	TCE-WQM3A	Action	
	ME	DO (S&M)	TCE-WQM4	Action	
	ME	DO (B)	TCE-WQM2a	Action	(d)
	ME	SS	TCE-WQM2a	Action	(c) (e)
	ME	SS	TCE-WQM3A	Action	(c) (e)
	ME	SS	TCE-WQM4	Action	(b) (c)
4 September 2019	ME	DO (S&M)	TCE-WQM2a	Action	(d) (f)
	ME	DO (S&M)	TCE-WQM2b	Action	
	ME	DO (S&M)	TCE-WQM3A	Action	
	ME	DO (S&M)	TCE-WQM4	Action	
	ME	DO (B)	TCE-WQM2a	Action	(d) (f)
	ME	SS	TCE-WQM2a	Action	(b) (c) (e)
	MF	DO (S&M)	TCE-WQM1	Action	(d) (f)
	MF	DO (S&M)	TCE-WQM2a	Action	
	MF	DO (S&M)	TCE-WQM2b	Action	
	MF	DO (S&M)	TCE-WQM3A	Action	
	MF	DO (S&M)	TCE-WQM4	Action	
	MF	DO (B)	TCE-WQM2b	Action	(a) (d)
6 September 2019	ME	DO (S&M)	TCE-WQM2a	Action	(d) (f)
	ME	DO (S&M)	TCE-WQM2b	Action	
	ME	DO (S&M)	TCE-WQM3A	Action	
	ME	DO (B)	TCE-WQM1	Action	(d) (f)
	ME	DO (B)	TCE-WQM2a	Action	
	ME	DO (B)	TCE-WQM2b	Action	
	ME	DO (B)	TCE-WQM3A	Action	
	MF	DO (S&M)	TCE-WQM2a	Action	(d) (f)
	MF	DO (S&M)	TCE-WQM2b	Action	
	MF	DO (S&M)	TCE-WQM3A	Action	
	MF	DO (S&M)	TCE-WQM4	Action	

Table 2.10Details of Exceedances Recorded for Water Quality Monitoring

Date	Tide	Parameter	Station	Type	Justification
	MF	DO (B)	TCE-WQM2a	Action	(d) (f)
	MF	DO (B)	TCE-WQM2b	Action	
	MF	DO (B)	TCE-WQM3A	Action	
9 September 2019	ME	DO (B)	TCE-WQM2b	Action	(d) (f)
	MF	DO (B)	TCE-WQM2b	Action	(a) (d)
11 September 2019	ME	SS	TCE-WQM2a	Action	(a) (c) (e)
16 September	ME	DO (S&M)	TCE-WQM1	Action	(d) (f)
2019	ME	DO (S&M)	TCE-WQM2a	Action	
	ME	DO (S&M)	TCE-WQM2b	Action	
	ME	DO (S&M)	TCE-WQM3A	Action	
	ME	DO (S&M)	TCE-WQM4	Action	
	ME	DO (B)	TCE-WQM1	Action	(d) (f)
	ME	DO (B)	TCE-WQM2a	Action	
	ME	DO (B)	TCE-WQM2b	Action	
	ME	DO (B)	TCE-WQM3A	Action	
	ME	DO (B)	TCE-WQM4	Action	
	ME	SS	TCE-WQM2b	Action	(a) (b) (c) (e)
	MF	DO (S&M)	TCE-WQM1	Action	(d) (f)
	MF	DO (S&M)	TCE-WQM2a	Action	
	MF	DO (S&M)	TCE-WQM2b	Action	
	MF	DO (S&M)	TCE-WQM3A	Action	
	MF	DO (S&M)	TCE-WQM4	Action	
	MF	DO (B)	TCE-WQM1	Action	(d) (f)
	MF	DO (B)	TCE-WQM2a	Action	
	MF	DO (B)	TCE-WQM2b	Action	
	MF	DO (B)	TCE-WQM3A	Action	
	MF	DO (B)	TCE-WQM4	Action	
	MF	SS	TCE-WQM2b	Action	(a) (b) (c) (e)
18 September	ME	DO (S&M)	TCE-WQM1	Action	(d) (f)
2019	ME	DO (S&M)	TCE-WQM2a	Action	
	ME	DO (S&M)	TCE-WQM2b	Action	
	ME	DO (S&M)	TCE-WQM3A	Action	
	ME	DO (S&M)	TCE-WQM4	Action	
	ME	DO (B)	TCE-WQM1	Action	(d) (f)
	ME	DO (B)	TCE-WQM2a	Action	
	ME	DO (B)	TCE-WQM2b	Action	
	ME	DO (B)	TCE-WQM3A	Action	
	ME	DO (B)	TCE-WQM4	Action	
	MF	DO (S&M)	TCE-WQM1	Action	(d) (f)
	MF	DO (S&M)	TCE-WQM2a	Action	
	MF	DO (S&M)	TCE-WQM2b	Action	
	MF	DO (S&M)	TCE-WQM3A	Action	—
	MF	DO (S&M)	TCE-WQM4	Action	
	MF	DO (B)	TCE-WQM1	Action	(d) (f)
	MF	DO (B)	TCE-WQM2a	Action	() (-)
	MF	DO (B)	TCE-WQM2b	Action	
	MF	SS	TCE-WQM4	Action	(b) (c)
20 September	ME	DO (S&M)	TCE-WQM1	Action	(d) (f)
2019	ME	DO (S&M)	TCE-WQM2a	Action	<u> </u>
-	ME	DO (S&M)	TCE-WQM2b	Action	
	ME	DO (S&M)	TCE-WQM3A	Action	
	ME	DO (B)	TCE-WQM5A TCE-WQM2a	Action	(d)
	ME	DO (B)	TCE-WQM2b	Action	(**)
	ME	SS SS	TCE-WQM12D	Action	(a) (c)
	1111	55		11011	(4) (4)

Date	Tide	Parameter	Station	Type	Justification
	MF	DO (S&M)	TCE-WQM1	Action	(d) (f)
	MF	DO (S&M)	TCE-WQM2a	Action	
	MF	DO (S&M)	TCE-WQM2b	Action	
	MF	DO (S&M)	TCE-WQM3A	Action	
	MF	DO (S&M)	TCE-WQM4	Action	
	MF	DO (B)	TCE-WQM1	Action	(d) (f)
	MF	DO (B)	TCE-WQM2a	Action	
	MF	DO (B)	TCE-WQM2b	Action	
	MF	DO (B)	TCE-WQM3A	Action	
	MF	DO (B)	TCE-WQM4	Action	
23 September	ME	DO (S&M)	TCE-WQM2a	Action	(d)
2019	ME	DO (S&M)	TCE-WQM3A	Action	
	ME	DO (B)	TCE-WQM2a	Action	(d)
	ME	DO (B)	TCE-WQM3A	Action	
	MF	DO (B)	TCE-WQM2a	Action	(a) (d)
	MF	DO (B)	TCE-WQM2b	Action	
25 September	ME	DO (S&M)	TCE-WQM3A	Action	(e) (g)
2019	ME	SS	TCE-WQM3A	Action	(c) (e)
	MF	SS	TCE-WQM1	Limit	(c) (e)
	MF	SS	TCE-WQM2a	Limit	(a) (c)
	MF	SS	TCE-WQM2b	Action	(a) (c)
	MF	SS	TCE-WQM4	Action	(c)
27 September 2019	MF	SS	TCE-WQM4	Action	(c)
30 September	ME	DO (S&M)	TCE-WQM1	Action	(d)
2019	ME	DO (S&M)	TCE-WQM2a	Action	
	ME	DO (S&M)	TCE-WQM2b	Action	
	ME	DO (S&M)	TCE-WQM3A	Action	
	ME	DO (S&M)	TCE-WQM4	Action	
	ME	DO (B)	TCE-WQM2a	Action	(d)
	ME	SS	TCE-WQM1	Action	(a) (c)
	MF	DO (S&M)	TCE-WQM1	Action	(d) (f)
	MF	DO (S&M)	TCE-WQM2a	Action	
	MF	DO (S&M)	TCE-WQM2b	Action	
	MF	DO (S&M)	TCE-WQM3A	Action	—
	MF	DO (S&M)	TCE-WQM4	Action	

Remarks:

- (a) The exceedance was not considered as caused by the construction of the Project due to the monitoring stations are located upstream/further away from the Project works area.
- (b) The exceedance was not considered as caused by the construction of the Project due to areas of reclamation related marine works undertaken under the Project were surrounded by silt curtain which were inspected daily by the Contractor and inspected periodically by ER. The silt curtain nearby the water quality monitoring stations was observed to be in good condition/well-functioning.
- (c) The exceedance was not considered as caused by the construction of the Project due to no sediment plume was observed nearby the water quality monitoring station during the sampling in mid-ebb/mid-flood tide.
- (d) The exceedance was not considered as caused by the construction of the Project due to the monitoring result was similar to the corresponding upstream/control station(s).
- (e) The exceedance was not considered as caused by the construction of the Project due to no marine construction activity under the Project was conducted near the water quality monitoring station.
- (f) The exceedance was not considered as caused by the construction of the Project due to the corresponding upstream/control station(s) already exceeded the Action Level during the same tide.

Date	Tide	Parameter	Station	Туре	Justification

(g) The exceedance was not considered as caused by the construction of the Project due to the DO level at TCE-WQM3A during mid-ebb tide was slightly below Action Level only and the overall DO levels at monitoring stations around Tung Chung East Reclamation Area and Control Stations were within 5.6-6.9 mg/L which suggested that there was no sudden change of DO levels around Tung Chung East Reclamation Area.

Based on the investigations conducted for each of the monitoring day with exceedances, the exceedances of DO are likely caused by seasonal fluctuation and the exceedances of SS are not likely caused by the work activities related to the Project.

In addition, low levels of DO were recorded during previous summer period. This further suggested that exceedances of DO are likely caused by seasonal fluctuation and a similar trend of lower levels of DO would likely occur again during summer period.

Nevertheless, the Contractor was reminded to implement all relevant mitigation measures for the marine works, including regular checking of silt curtain integrity, provide periodic maintenance and maintain good site practice. The ET will keep on checking monitoring data, plant, equipment and Contractor's working methods.

2.4 SOFT SHORE ECOLOGICAL MONITORING

2.4.1 Monitoring Requirements

According to the Updated EM&A Manual of the Project, impact soft shore ecological monitoring has to be conducted quarterly at each survey location at Tung Chung Bay (TCB) and Tai Ho Wan (THW) covering wet and dry seasons during the marine construction of the Project. The soft shore ecological monitoring consisted of qualitative walk-through surveys, quantitative transect surveys and sedimentation rate monitoring at the accessible survey locations of TCB and THW.

For qualitative walk-through surveys, the accessible shoreline of TCB and THW at each of the three shore heights: 2 m, 1.5 m and 1 m above Chart Datum was surveyed, and organisms encountered were recorded and their relative abundance noted. In particular, active search of horseshoe crabs and seagrasses were conducted to confirm whether these species are present along the sites.

For quantitative transect survey, one 50 - 100 m horizontal (belt) transect (actual length subject to the site conditions) was surveyed at each of the three shore heights: 2 m, 1.5 m and 1 m above Chart Datum of each survey location. On each transect, five quadrats (50 cm x 50 cm) were placed randomly in each transect to assess the abundance and distribution of flora and fauna. For each quadrat, surface layer to 5 cm depth was sieved and microbenthic organisms (e.g. crustaceans) were recorded and identified. Density of organisms was expressed as individuals / m². Areas with seagrass were also recorded and identified and other information, such as the percentage cover, were also recorded. Sessile animals such as barnacles and oysters in each quadrat were not counted but estimated as percentage cover on the rock surface. All species of algae (encrusting, foliose and filamentous) were also identified and recorded by estimating the percentage cover on the rock surface. All organisms were identified to the lowest possible taxonomic level (at least Genus level). Species encountered outside the quadrat but in the vicinity of survey transect were also recorded.

For sedimentation rate monitoring, to avoid disturbance to the mudflat and nuisance to navigation, no fixed marker/monitoring rod was installed at the monitoring stations. A high precision Global Navigation Satellite System (GNSS) real time location fixing system was used to locate the station in the precision of 1 mm, which is reasonable under flat mudflat topography with uneven mudflat surface only at micro level.

Measurements were taken directly on the mudflat surface. The Real Time Kinematic GNSS (RTK GNSS) surveying technology was used to measure mudflat surface levels and 3D coordinates of a survey point. The RTK GNSS survey was calibrated against a reference station in the field before and after each survey. The reference station is a survey control point established by the Lands Department of the HKSAR Government using professional surveying instruments such as total station, level and geodetic global navigation satellite system. The coordinates system is in HK1980 GRID system. The reference station was surveyed and established by traditional land surveying methods using professional surveying instruments such as total station, level and geodetic GNSS. The accuracy was down to mm level and higher than the proposed RTK GNSS cm level so that the reference control station has relatively higher accuracy. As the reference control station has higher accuracy, it was set as true evaluation relative to the RTK GNSS measurement. All position and height correction were adjusted and corrected to the reference control station.

The precision of the measured mudflat surface level reading (vertical precision setting) was within 10 mm (standard deviation) after averaging the valid survey records of the XYZ HK1980 GRID coordinates. Each survey record at each station was computed by averaging at least three measurements that are within the above specified precision setting. Both digital data logging and written records were collected in the field. Field data on station fixing and mudflat surface measurement were recorded.

2.4.2 Monitoring Schedule for the Reporting Month

The schedule for soft shore ecological monitoring during the reporting period is provided in *Annex H1*.

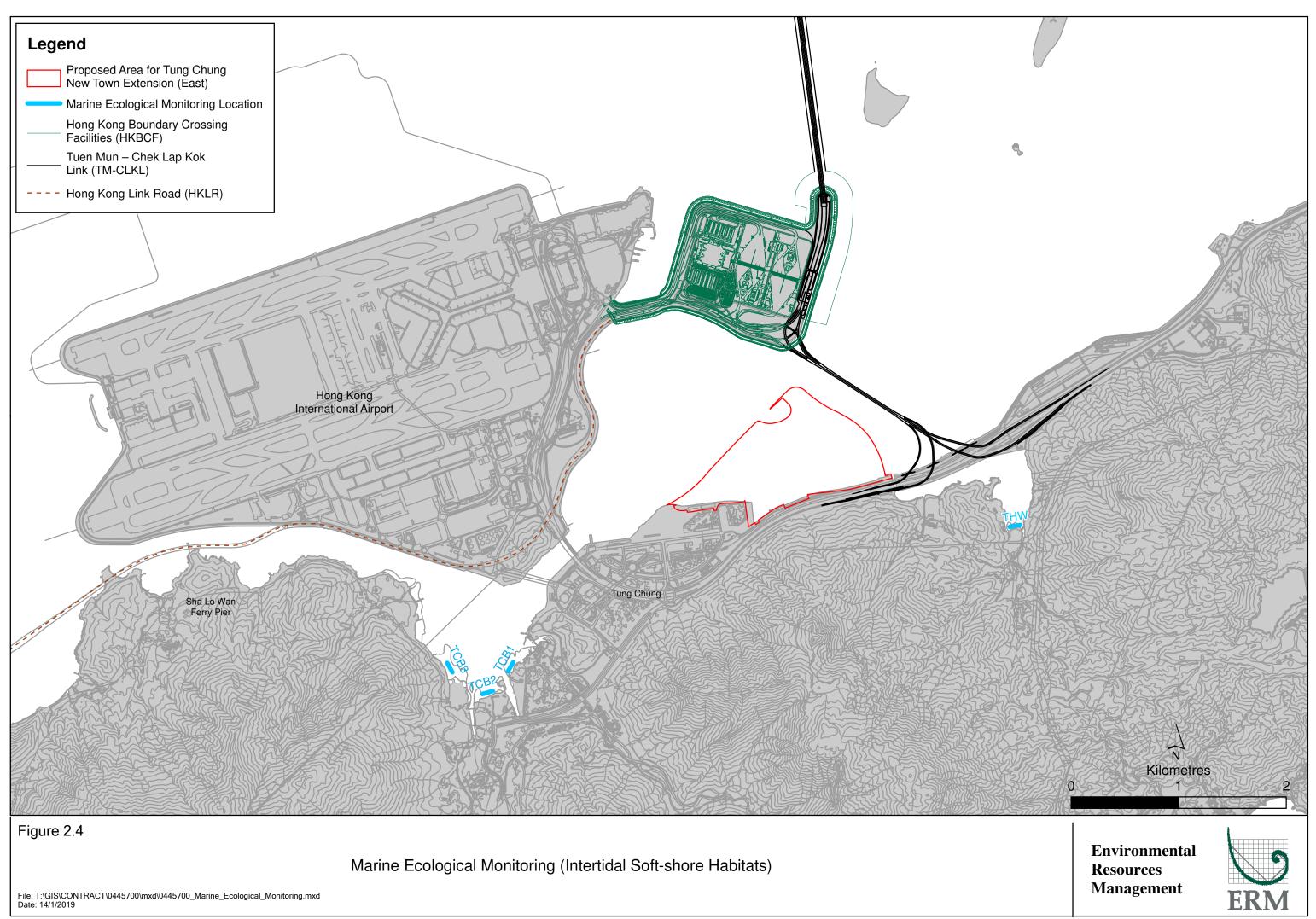
2.4.3 Results and Observations

Impact soft shore ecological monitoring was conducted at three (3) monitoring locations at Tung Chung Bay (TCB), situated in the eastern side (TCB1),

southern side (TCB2) and western side (TCB3) as well as one (1) monitoring location at Tai Ho Wan (THW) as shown in *Figure 2.4* during the reporting period. Representative photographs taken during the impact monitoring are presented in *Figure 2.5*.

For qualitative walk-through surveys, horseshoe crabs, intertidal soft shore communities and seagrass beds were recorded during the impact monitoring. The survey results for each monitoring location are summarized in *Table 2.11* below and detailed in *Annex H2*.

		Horseshoe Crabs			grass	No. of	
Date and Locat Time ⁽¹⁾	Location	No. of Species	No. of Individuals	No. of Species	Area Coverage (m²)	Other Intertidal Species	
9/9/2019 09:00-14:00; 12/9/2019 13:00-15:00	THW	2	22	0	0	44	
10/9/2019 13:00-15:00	TCB2	1	2	0	0	39	
11/9/2019 11:45-16:30	TCB1	1	5	0	0	57	
11/9/2019 10:45-14:45	TCB3	2	27	1	0.4	42	


Table 2.11Summary of Qualitative Walk-through Surveys

Note:

(1) For qualitative walk-through surveys, surveys were conducted on 9 and 12 September 2019 at THW, 10 September 2019 at TCB2 and 11 September 2019 at TCB1 and TCB3. For quantitative transect surveys, surveys were conducted on 9 September 2019 at THW, 11 September 2019 at TCB1 and 10 September 2019 at TCB2 and TCB3.

For quantitative transect surveys, a total of 5,037 individuals were recorded from all transects at monitoring stations TCB1-3 and THW. The most abundant group of intertidal soft shore communities recorded was gastropods, with a total of 4,862 individuals (relative abundance of 96.5% and density of 324 individual m⁻²). The summary of the top three dominant species at each shore height of each monitoring station and the complete list of species and density recorded are presented in *Annex H2*. When compared with the results obtained during the baseline monitoring as presented in the Baseline Monitoring Report ⁽¹⁾, higher number of intertidal species were recorded at each monitoring location, though the abundance / density of intertidal communities was observed to be lowered. Nevertheless, there is no indication of change in composition of intertidal communities during the reporting period.

ERM (2018b). Baseline Monitoring Report for Tung Chung New Town Extension (East). Submitted to EPD under EP-519/2016

(a) Survey Location at TCB1

(b) Survey Location at TCB2

(c) Survey Location at TCB3

(d) Survey Location at THW

(e) Horseshoe crab *Tachypleus tridentatus* recorded at TCB2 during Qualitative Walk-through Survey

(f) Seagrass *Halophila ovalis* recorded at TCB3 during Qualitative Walk-through Survey

The mudflat surface levels at the four selected monitoring stations in September 2019 and the corresponding XYZ HK1980 GRID coordinates are presented in *Table 2.12*. When compared with the results obtained during the baseline monitoring as presented in the Baseline Monitoring Report ⁽¹⁾, the sediment levels at all monitoring stations decreased. The ET will continue to observe the trend of change in sediment levels over time for further comparison and review.

Monitoring Station	Northing (m)	Easting (m)	Z level at September 2019 (mPD)	Remarks
TCB1	816068.674	811129.269	1.209	Soft mudflat
TCB2	815812.701	810917.358	1.106	Soft mudflat
TCB3	816027.370	810696.211	1.029	Soft mudflat
THW	817472.009	815850.322	0.977	Soft mudflat

Table 2.12Results of Sedimentation Rate Monitoring

Based on the impact monitoring results, there was no evidence showing any significant change in intertidal communities when compared against the data obtained during baseline monitoring. No action is thus required to be undertaken in accordance with the Event and Action Plan presented in *Annex H3*. The ET will continue to observe the change in density or the distribution pattern of horseshoe crab, seagrass and intertidal soft shore communities taking into account natural fluctuation in respect of the occurrence and distribution pattern.

2.5 EM&A SITE INSPECTION

Site inspections were carried out on a weekly basis with the Contractor and ER to monitor the implementation of proper environmental pollution control and mitigation measures for air quality, noise, water quality, waste management, marine ecology and landscape and visual impacts under the Project. In the reporting period, four (4) site inspections were carried out on 5, 12, 19 and 26 September 2019.

Key observations during the site inspections are summarized in *Table 2.13*.

Table 2.13Key Observations Identified during the Site Inspection in this Reporting
Month

Inspection Date	Environmental Observations	Recommendations/ Remarks
5 September 2019	Tug boat (Harvest) Black smoke was observed. 	 Tug boat (Harvest) Although the emission was not continuous and only occur during the startup of the tug boat, the Contractor was reminded to provide regular maintenance and/or other mitigation measures to prevent dark smoke emission.

Inspection Date	Environmental Observations	Recommendations/ Remarks	
12 September 2019	Land DCMBlack smoke was observed.	 Land DCM The Contractor was reminded to provide regular maintenance and/or other mitigation measures to prevent dark smoke emission. 	
19 September 2019	 DCM barge (ESC51) The dolphin watching checklist was not properly recorded. Tung Chung East Reclamation Area Defects were observed on silt curtain. 	 DCM barge (ESC51) The Contractor was reminded to provide training to the dolphin observer on the requirement of Dolphin Watching Plan. Tung Chung East Reclamation Area The Contractor was reminded to provide maintenance on the silt curtain. 	
26 September 2019	DCM barge (DCM2)Silt curtain on the DCM barge was not in good condition.	DCM barge (DCM2)The Contractor was reminded to provide maintenance on the silt curtain.	

The Contractor has rectified all of the observations identified during environmental site inspections in the reporting period. The Contractor was reminded to implement all relevant mitigation measures outlined in the EIA Report and EM&A Manual.

2.6 WASTE MANAGEMENT STATUS

The Contractor has registered as chemical waste producer under the Contract. Sufficient numbers of receptacles were available for general refuse collection and sorting.

All dump trucks engaged on site was equipped with RTTM system during the reporting period. The Surveillance Team of the ET conducted regular site inspection on the dump trucks and their track records. No illegal dumping and landfilling of C&D materials was found during the reporting period.

Wastes generated during this reporting period include mainly non-inert construction wastes, chemical waste and recyclable materials. The Project imports fill materials including mainly sand and public fill. In addition, the Project reuses inert construction materials from other projects which are not generated by the Project for reclamation activities i.e. imported fill (sand) for sand blanket. Reference has been made to the waste flow table prepared by the Contractor. The quantities of different types of wastes and imported fill materials are summarised in *Table 2.14*.

Table 2.14 Quantities of Different Waste Generated and Imported Fill Materials

Month / Year	Inert C&D Materials ^(a) (m ³)	Imported Fill ^{(d) (e)} (sand) (m ³)	Imported Fill ^(d) (public fill) (m ³)	Inert Construction Waste Re- used (m ³)	Non-inert Construction Waste ^(b) (m ³)	Recyclable Materials ^(c) (kg)	Chemical Wastes (kg)
1 to 31	0	77,908	173,288	282	55.0	70	0
Jul 19							
1 to 31	0	81,922	266,660	379	42.0	105.0 ^(f)	1,600
Aug 19							
1 to 30	0	77,756	273,442	1	62.0	5,730	0
Sep 19							

Notes:

(a) Inert construction wastes include hard rock and large broken concrete, and materials disposed as public fill.

(b) Non-inert construction wastes include general refuse disposed at landfill.

(c) Recyclable materials include metals, paper, cardboard, plastics and others.

(d) Imported fill materials include sand and public fill.

(e) No glass cullet was imported in the reporting period.

(f) Updated figure is presented.

2.7 IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

A summary of the Environmental Mitigation Implementation Schedule is presented in *Annex B*. The necessary mitigation measures were implemented properly for the Project.

2.8 SUMMARY OF EXCEEDANCES OF THE ENVIRONMENTAL QUALITY PERFORMANCE LIMIT

The monitoring results for air quality monitoring (1-hour TSP) and construction noise monitoring complied with the Action/ Limit levels in the reporting period. No Project-related Action/ Limit level exceedances were recorded for water quality after investigations.

Cumulative statistics on exceedances is provided in Annex I.

2.9 SUMMARY OF COMPLAINTS, NOTIFICATION OF SUMMONS AND SUCCESSFUL PROSECUTIONS

There was no environmental complaint, notification of summons or prosecution recorded in the reporting period.

Statistics on complaints, notifications of summons, successful prosecutions are summarised in *Annex I*.

3 FUTURE KEY ISSUES

3.1 CONSTRUCTION PROGRAMME FOR THE COMING MONTH

Works to be undertaken in the next monitoring period of October 2019 are summarized in *Table 3.1* below, together with the key issues and the key mitigation measures:

Activities	Key Issues	Key Mitigation Measures
 Land-based Works Roads, drainage, sewerage works and backfilling work at Area 58 (near Man Tung Road) Land-based ground investigation works Land DCM works Placing of sorted public fill 	 Dust emission Handling and storage of C&D materials generated from construction activities Noise from plant operation Emission of dark smoke from PMEs Efficiency of wastewater and drainage management Efficiency of flood management for rainy season 	 Good site practices Regular water spraying on stockpiles, unpaved haul road and land filling area Sorting and reuse of C&D materials as far as practicable Use of QPME and noise barrier/acoustic mat Regular maintenance of PMEs Implementation of wastewater and drainage management
Marine-based Works		munitgeniem
 Laying of geotextile and sand blanket for reclamation works and DCM works Placing of sorted public fill DCM works Marine ground investigation works 	 Elevation in impact on Water Quality due to sediment loss from sand blanket laying and marine filling works Potential surface runoff Potential filling material drop from barges Disturbance to Chinese White Dolphin Noise from marine vessels and plant operation during normal working hours or restricted hours Dust emission during storage and transfer of sand/ sorted public fill Emission of dark smoke from marine vessel 	 Provision of perimeter silt curtain Provision of a leading seawall of at least 200m before marine filling works Regular cleaning of accumulated sand/fill materials at the edge of the barges Implementation of Dolphin Watching for the marine-based works Strictly follow requirement under CNP for the use of PMEs and works within restricted period Use of acoustic mat and other noise mitigation measures when necessary Regular water spraying and provide tarpaulin sheets coverage on stockpiles Regular maintenance of engines and mechanical equipment

The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures. The ET will also recommend to the Contractor about the environmental toolbox topics on the abovementioned key issues for the next reporting period.

3.2 MONITORING SCHEDULE FOR THE COMING MONTH

The tentative schedules for environmental monitoring in October 2019 are provided in *Annex J*.

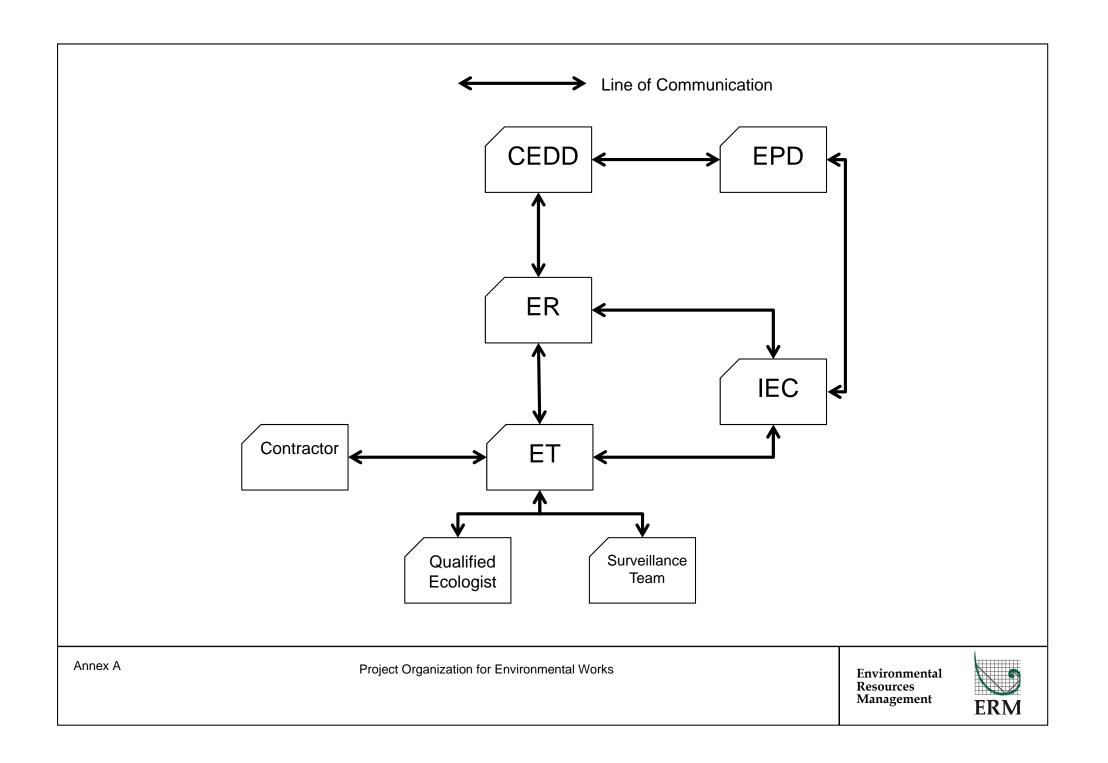
CONCLUSION AND RECOMMENDATION

4

This EM&A Report presents the findings of the EM&A activities undertaken during the period from 1 to 30 September 2019 in accordance with the Updated EM&A Manual and the requirements of the Environmental Permit (*EP-519/2016*).

Air quality (1-hour TSP), noise and water quality (DO, turbidity and SS) and soft shore ecological monitoring were carried out in the reporting period.

The monitoring results for air quality monitoring (1-hour TSP) and construction noise monitoring complied with the Action/ Limit levels in the reporting period. No Project-related Action/ Limit level exceedances were recorded for water quality after investigations.


Based on the monitoring results for soft shore ecological monitoring, there was no evidence showing any significant change in intertidal communities when compared against the data obtained during baseline monitoring. The ET will continue to observe the change in density or the distribution pattern of horseshoe crab, seagrass and intertidal soft shore communities taking into account natural fluctuation in respect of the occurrence and distribution pattern.

Environmental site inspections were carried out during the reporting period. Recommendations on remedial actions were given to the Contractor for the deficiencies identified during the site inspections.

There was no environmental complaint, notification of summons or prosecution recorded in the reporting period.

The ET will keep track on the construction works to confirm compliance of environmental requirements and the proper implementation of all necessary mitigation measures. Annex A

Project Organisation

Annex B

Environmental Mitigation Implementation Schedule

Note: Chapters 1 to 2 of the EIA report present the background information of the Project, identified concurrent projects, objectives and scope for various environmental aspects, and description on alternative options and construction description. Chapters 3 to 12 of the EIA report present the EIA findings and mitigation measures are described below with cross-reference to the EIA report. Chapters 13 to 15 describe the environmental monitoring requirements, summary of environmental outcomes and conclusion.

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Common	Mitigation	Measures (Applicable to ALL Project Components, including D	Ps and Non-DPs)				
Construc	tion Dust In	npact					
S3.4.6	D1	Water spraying every hour on exposed worksites and haul road.	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	 APCO To control the dust impact to meet HKAQO and TM-EIAO criteria
S3.4.6	D2	The contractor shall follow the procedures and requirements given in the Air Pollution Control (Construction Dust) Regulation	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	 APCO To control the dust impact to meet HKAQO and TM-EIAO criteria
\$3.4.6	D3	 The following dust suppression measures should be incorporated to control the dust nuisance throughout the construction phase: Any excavated or stockpile of dusty material should be covered entirely by impervious sheeting or sprayed with water to maintain the entire surface wet and then removed or backfilled or reinstated where practicable within 24 hours of the excavation or unloading; Any dusty materials remaining after a stockpile is removed should be wetted with water and cleared from the surface of roads; 	Minimize dust impact at the nearby sensitive receivers	Contractor	All construction sites	Construction stage	 APCO To control the dust impact to meet HKAQO and TM-EIAO criteria

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	ObjectivesoftheRecommendedMeasures&MainConcerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		• A stockpile of dusty material should not be extended beyond the pedestrian barriers, fencing or traffic cones;					
		• The load of dusty materials on a vehicle leaving a construction site should be covered entirely by impervious sheeting to ensure that the dusty materials do not leak from the vehicle;					
		• Where practicable, vehicle washing facilities with high pressure water jet should be provided at every discernible or designated vehicle exit point. The area where vehicle washing takes place and the road section between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores;					
		• When there are open excavation and reinstatement works, hoarding of not less than 2.4m high should be provided as far as practicable along the site boundary with provision for public crossing. Good site practice shall also be adopted by the Contractor to ensure the conditions of the hoardings are properly maintained throughout the construction period;					
		• The portion of any road leading only to construction site that is within 30m of a vehicle entrance or exit should be kept clear of dusty materials;					
		• Surfaces where any pneumatic or power-driven drilling, cutting, polishing or other mechanical breaking operation takes place should be sprayed with water or a dust suppression chemical continuously;					
		• Any area that involves demolition activities should be sprayed with water or a dust suppression chemical immediately prior to, during and immediately after the activities so as to maintain the entire surface wet;					
		• Where a scaffolding is erected around the perimeter of a building under construction, effective dust screens,					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		sheeting or netting should be provided to enclose the scaffolding from the ground floor level of the building, or a canopy should be provided from the first floor level up to the highest level of the scaffolding;					
		• Any skip hoist for material transport should be totally enclosed by impervious sheeting;					
		• Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides;					
		• Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed;					
		• Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system; and					
		• Exposed earth should be properly treated by compaction, turfing, hydroseeding, vegetation planting or sealing with latex, vinyl, bitumen, shortcrete or other suitable surface stabiliser within six months after the last construction activity on the construction site or part of the construction site where the exposed earth lies.					
\$3.4.6	D4	Implement regular dust monitoring under EM&A programme during the construction stage.	Monitoring of dust impact	Contractor	Selected dust monitoring stations	Construction stage	• TM-EIAO

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Construc	tion Noise						
S4.3.4	N1	 Implement the following good site management practices: only well-maintained plant should be operated on-site and plant should be serviced regularly during the construction programme; machines and plant (such as trucks, cranes) that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum; plant known to emit noise strongly in one direction, where possible, be orientated so that the noise is directed away from nearby NSRs; silencers or mufflers on construction equipment should be properly fitted and maintained during the construction works; mobile plant should be sited as far away from NSRs as possible and practicable; material stockpiles, site office and other structures should be effectively utilised, where practicable, to screen noise from on-site construction activities. 	Control construction airborne noise	Contractor	All construction sites where practicable	Construction stage	• Annex 5, TM- EIAO
S4.3.4	N2	Use of quiet plant which should be made reference to the Powered Mechanical Equipment (PME) listed in the Technical Memorandum or the Quality Powered Mechanical Equipment (QPME) / other commonly used PME listed in Environmental Protection Department (EPD) web pages as far as possible which includes the Sound Power Level (SWLs) for specific quiet PME.	Reduce the noise levels of plant items	Contractor	All construction sites where practicable	Construction stage	• Annex 5, TM- EIAO
S4.3.4	N3	Install movable temporary noise barriers (typical design is wooden framed barrier with a small-cantilevered upper portion of superficial density no less than 7kg/m^2 on a skid	items to be used at all		All construction sites where	Construction stage	• Annex 5, TM- EIAO

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		footing with 25mm thick internal sound absorptive lining), and full enclosure, screen the noisy plants including air compressors, generators etc.	construction sites		practicable		
S4.3.4	N4	Implement a noise monitoring under EM&A programme.	Monitor the construction noise levels at the selected representative locations	Contractor	Selected noise monitoring stations	Construction stage	• TM-EIAO
Operatio	nal Noise (H	Road Traffic Noise)					
S4.5.4	N5	 Provide a series of noise mitigation measures including low noise surfacing material, noise barriers, facades with no openable window, school boundary walls and architectural fins before occupation of the protected NSRs. Locations of noise mitigation measures are stated as following: Year 2023: Facade with no openable window at B1-1 and B1-2 for TCE; TCV-6 for TCW 1.5m long architectural fin at B1-1 and B1-2 for TCE Approx. 50m long, 4m high school boundary wall at possible school development near Tung Chung Area 39 Approx. 120m long, 5m high vertical barrier with 3m cantilevered arm at 45° at the corner at junction between Chung Mun Road and Road L24 Approx. 160m long LNRS along Road L24 Approx. 160m long LNRS along Road L30 Year 2025: Facade with no openable window at B1-1, B1-2, D1-1, 	Reduce operation noise from road traffic	government	Refer to Figure 6.1, Figure 6.1a- b, Figure 6.2, Figures 6.2a-b, Figure 6.3, Figures 6.3a-d, Figure 6.4, and Figures 6.4a-e		• TM-EIAO

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		D1-2, D2-3 and D2-4 for TCE; TCV-6 for TCW					
		• 1.5m long architectural fin at B1-1, B1-2 and D2-4 for TCE; TCV-1 for TCW					
		• Approx. 60m long, 5m high school boundary wall along Road L3					
		• Approx. 70m long, 5m high school boundary wall with 3m cantilevered arm at 45° along Road L3					
		• Approx. 50m long, 4m high school boundary wall at possible school development near Tung Chung Area 39					
		• Approx. 120m long, 5m high vertical barrier with 3m cantilevered arm at 45° at the corner at junction between Chung Mun Road and Road L24					
		• Approx. 210m long LNRS along Chung Mun Road					
		• Approx. 160m long LNRS along Road L24					
		• Approx. 160m long LNRS along Road L30					
		Year 2027:					
		• Facade with no openable window at A1-1, A1-2, A2-1, A2-2, A2-3, A2-4, B1-1, B1-2, D1-1, D1-2, D2-3 and D2-4 for TCE; TCV-6 for TCW					
		• 1.5m long architectural fin at A2-1, A2-4, B1-1, B1-2 and D2-4 for TCE;					
		• 1.8m long architectural fin at A1-1, A1-2, A2-1 and A2-4					
		• Approx. 60m long, 5m high school boundary wall along Road L3					
		• Approx. 70m long, 5m high school boundary wall with 3m cantilevered arm at 45° along Road L3					
		• Approx. 50m long, 4m high school boundary wall at					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		possible school development near Tung Chung Area 39					
		• Approx. 120m long, 5m high vertical barrier with 3m cantilevered arm at 45° at the corner at junction between Chung Mun Road and Road L24					
		• Approx. 210m long LNRS along Chung Mun Road					
		• Approx. 160m long LNRS along Road L24					
		• Approx. 160m long LNRS along Road L30					
		Year 2045:					
		• Facade with no openable window at A1-1, A1-2, A2-1, A2-2, A2-3, A2-4, B1-1, B1-2, C1-1, C2-1, C2-2, D1-1, D1-2, D2-3, D2-4, E1-4 and E1-5 for TCE; TCV-1 and TCV-6 for TCW					
		• 1.5m long architectural fin at A2-1, A2-4, B1-1, B1-2, C1- 1 and D2-4 for TCE; TCV-1 for TCW					
		• 1.8m long architectural fin at A1-1, A1-2, A2-1, A2-4 and C1-1					
		• Approx. 100m long, 5m high absorptive vertical barrier along Road D3					
		• Approx. 50m long, 5m high absorptive vertical barrier with 3m cantilevered arm at 45° along Road L7					
		• Approx. 60m long, 5m high school boundary wall along Road L3					
		• Approx. 70m long, 5m high school boundary wall with 3m cantilevered arm at 45° along Road L3					
		• Approx. 80m long, 4m high school boundary wall along Road L2					
		• Approx. 40m long, 3m high school boundary wall along Road L2					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		• Approx. 50m long, 4m high school boundary wall at possible school development near Tung Chung Area 39					
		• Approx. 120m long, 5m high vertical barrier with 3m cantilevered arm at 45° at the corner at junction between Chung Mun Road and Road L24					
		• Approx. 210m long LNRS along Chung Mun Road					
		• Approx. 160m long LNRS along Road L24					
		• Approx. 160m long LNRS along Road L30					
Operatio	nal Noise (I	Fixed Noise)					
S4.6.4	N6	 For existing and planned NSRs which are located near to the proposed noise sources, the following tentative noise mitigation measures are considered: All the pumps should be enclosed inside building structures; Proper selection of quiet plant to reduce the tonality at NSRs; Installation of silencer / acoustic enclosure / acoustic louvers for the exhaust of ventilation system. For underground train stations, sound attenuators with sufficient attenuations can be installed to the ventilation shafts. Openings of ventilation system should be located away from NSRs. 	Reduce operation fixed noise	Relevant government departments / Future Operator	All plant rooms where practicable	Prior to operation of the Project	• Noise Control Ordinance and its TM, TM- EIAO

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
S4.8.4	N7	 Before Phase 1 is occupied: Facade with no openable windows for residential block at B1-2 1.5m long architectural fin at B1-2 Before Phase 3 is occupied: It should be noted that Railway Stations at TCE and TCW and its associated railway system is a Designated Project under Item A.2 of Schedule 2 of TM-EIAO. Hence, the proposed mitigation measures are tentative for cumulative assessment purpose in this EIA and all the mitigation measures will be revised by the railway operator during their Schedule 2 EIA. Approx. 325m long, semi enclosure along the tracks of Tung Chung Line facing A1-2 and C1-1 Approx. 390m long, semi enclosure along the track of Tung Chung Line to Tung Chung direction facing C1-1 to C2-1 Approx. 630m long, semi enclosure along the track of Tung Chung Line to Hong Kong direction facing C1-1 and C2-1 	Reduce operation rail noise	Relevant government departments / Future Operator	Refer to Figure 6.1, Figure 6.1a- b, Figure 6.2, Figures 6.2a-b, Figure 6.3, Figure 6.3, Figure 6.4, and Figures 6.4a-e	population intake	• Noise Control Ordinance and its TM, TM- EIAO

EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
uality (Const	ruction Phase)					
W1	<u>General Construction Activities</u> In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), best management practices should be implemented on site as far as practicable. The best practices are detailed below:	To minimize water quality impact from construction site runoff and general construction activities	Contractor	All construction sites where applicable	Construction stage	 Water Pollution Control Ordinance ProPECC PN1/94 TM-EIAO
	• At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works. Channels, earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.;				• TM-DSS	
	• Diversion of natural stormwater should be provided as far as possible. The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipment in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped;					
	• The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates;					
	uality (Const	Log Ref General Construction Activities W1 General Construction Activities In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PNI/94), best management practices should be implemented on site as far as practicable. The best practices are detailed below: • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works. Channels, earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.; • Diversion of natural stormwater should be provided as far as possible. The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipment in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped; • The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to	Log Ket Measures & Main Concerns to address Measures & Main Concerns to address Multical Construction Phase) W1 General Construction Activities In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PN1/94), best management practices should be implemented on site as far as practicable. The best practices are detailed below: To minimize water quality impact from activities • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works. Channels, earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.; Diversion of natural stormwater should be provided as far as possible. The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipment in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped; • The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates; <	Log Ker Measures & Main Concerns to address Agent Measures & Main Concerns to address Multical Construction Phase) W1 General Construction Activities In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (Pr-DECC PN1/94), best management practices should be implemented on site as far as practicable. The best practices are detailed below: To minimize water quality impact from constructed off-site water around the site should be constructed off-site water around the site should be constructed with internal drainage works. Channels, earth bunds or sand bag barriers should be provided on site to direct stormwater to silt removal facilities.; To minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped; • The dikes or embankments for flood protection should be incorporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates;	Log Ker Pressures & Main Agent Construction Phase Pressure Set Main Concerns to address will (Construction Phase) General Construction Activities In accordance with the Practice Note for Professional Persons on Construction Site Drainage, Environmental Protection Department, 1994 (ProPECC PNI/94), best management practices should be implemented on site as far as practicable. The best practices are detailed below: To minimize vater Contractor ageneral construction sites where applicable All construction sites where applicable • At the start of site establishment, perimeter cut-off drains to direct off-site water around the site should be constructed with internal drainage works. Channels, earth bunds or sand bag barriers should be provided as far as possible. The design of temporary on-site drainage should prevent runoff going through site surface, construction machinery and equipment in order to avoid or minimize polluted runoff. Sedimentation tanks with sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacities, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity shall be flexible and able to handle multiple inputs from a variety of sources and suited to applications where the influent is pumped; The dikes or embankments for flood protection should be implemented around the boundaries of earthwork areas. Temporary ditches should be provided to facilitate the runoff discharge into an appropriate watercourse, through a silt/sediment trap. The silt/sediment traps should be incorporated in the permanent drainage channels to enhance deposition rates; The dikes or embankment for logs	Log Ref Agent Timing Stage Measures & Avian Concerns to address Agent Timing Stage

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		based on the guidelines in Appendix A1 of ProPECC PN 1/94. The detailed design of the sand/silt traps should be undertaken by the contractor prior to the commencement of construction;					
		• Construction works should be programmed to minimize surface excavation works during the rainy seasons (April to September). All exposed earth areas should be completed and vegetated as soon as possible after earthworks have been completed. If excavation of soil cannot be avoided during the rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means;					
		• All drainage facilities and erosion and sediment control structures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rainstorms. Deposited silt and grit should be removed regularly and disposed of by spreading evenly over stable, vegetated areas;					
		• If the excavation of trenches in wet periods is necessary, it should be dug and backfilled in short sections wherever practicable. Water pumped out from trenches or foundation excavations should be discharged into storm drains via silt removal facilities;					
		• All open stockpiles of construction materials (for example, aggregates, sand and fill material) should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system;					
		• Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		directed into foul sewers;					
		• Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecasted, and actions to be taken during or after rainstorms are summarized in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events;					
		 All vehicles and plant should be cleaned before leaving a construction site to ensure no earth, mud, debris and the like is deposited by them on roads. An adequately designed and sited wheel washing facilities should be provided at every construction site exit where practicable. Wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains; 					
		• Oil interceptors should be provided in the drainage system downstream of any oil/fuel pollution sources. The oil interceptors should be emptied and cleaned regularly to prevent the release of oil and grease into the storm water drainage system after accidental spillage. A bypass should be provided for the oil interceptors to prevent flushing during heavy rain;					
		• Construction solid waste, debris and rubbish on site should be collected, handled and disposed of properly to avoid water quality impacts;					
		• All fuel tanks and storage areas should be provided with locks and sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank to prevent spilled fuel oils from reaching water sensitive					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		 receivers nearby;and Regular environmental audit on the construction site should be carried out in order to prevent any malpractices. Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the water bodies, mangroves and open sea. 					
S5.4.3	W2	 Sewage from workforce Portable chemical toilets and sewage holding tanks are recommended for handling the construction sewage generated by the workforce. A licensed contractor should be employed to provide appropriate and adequate portable toilets and be responsible for appropriate disposal and maintenance; Notices should be posted at conspicuous locations to remind the workers not to discharge any sewage or wastewater into the nearby environment during the construction phase of the Project; Regular environmental audit on the construction site should be conducted in order to provide an effective control of any malpractices and achieve continual improvement of environmental performance on site. 	To minimize water quality from sewage effluent in construction phase	Contractor	All construction sites where practicable	Construction stage	 Water Pollution Control Ordinance TM-DSS
\$5.4.3	W3	 <u>Construction Works and Bridge Works near Tung Chung</u> <u>Stream</u> Use precast structures or other similar approaches 	To prevent any construction works in river and avoid any direct water quality impact to Tung Chung Stream	Contractor	All construction sites where practicable	Construction stage	• ProPECC PN1/94
S5.4.3	W4	 <u>Construction Works of Sewage Pumping Stations</u> A buffer zone of about 20m or about 30m will be zoned to 	To avoid any direct water quality impact to Tung Chung Stream	Contractor	All construction sites where	Construction stage	• ProPECC PN1/94

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		prevent any construction works near river.			practicable		
S5.4.3	W5	 <u>Construction Work of Fresh Water and Salt Water Reservoirs</u> Good site management as stipulated in ProPECC PN1/94 will be fully implemented to avoid polluted liquid or solid wastes from falling into the river waters or drainage. 	To avoid water quality impact	Contractor	All construction sites where practicable	Construction stage	• ProPECC PN1/94
S5.4.3	W6	 <u>Construction of Storm Water Management Facilities and</u> <u>Polder Scheme</u> Good site management as stipulated in ProPECC PN1/94 will be fully implemented to avoid polluted liquid or solid wastes from falling into the river waters or drainage. 	To avoid any direct water quality impact to Tung Chung Stream	Contractor	All construction sites where practicable	Construction stage	• ProPECC PN1/94
\$5.4.3	W7	 <u>Groundwater and Runoff for Tunnel Works</u> Cut-and-Cover method for the underpass at Road D1 in Tung Chung East to minimise the intrusion of groundwater. Good site management as stipulated in ProPECC PN1/94 will be fully implemented to avoid polluted liquid or solid wastes from falling into the river waters or drainage. 	To avoid water quality impact	Contractor	All construction sites where practicable	Construction stage	• ProPECC PN1/94
S5.5.8	W8	 <u>Good Management Practice in Construction Phase</u> The following good site management practices shall be adopted for the filling works: Water quality monitoring shall be implemented to ensure effective control of water pollution and recommend additional mitigation measures required; The decent speed of grabs shall be controlled to minimize the seabed impact and to reduce the volume of overdredging; A perimeter silt curtain shall be installed during the entire 	To avoid water quality impact	Contractor	All construction sites where practicable	Construction stage	• ProPECC PN1/94

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		reclamation periods;					
		• Barges or hoppers shall not be filled to a level which will cause overflow of materials or pollution of water during loading or transportation;					
		• Excess materials shall be cleaned from the decks and exposed fittings of barges before the vessels are moved;					
		• Plants should not be operated with leaking pipes and any pipe leakages shall be repaired quickly;					
		• Adequate freeboard shall be maintained on barges to reduce the likelihood of decks being washed by wave action;					
		• All vessels should be sized so that adequate clearance is maintained between vessels and the seabed in all tide conditions, to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash; and					
		• The works shall not cause foam, oil, grease, litter or other objectionable matter to be present in the water within and adjacent to the works site.					
S5.5.8	W9	• The recovered C&D materials for filling would be ensured no floating or non-inert material by visual inspection, quality assurance, etc.	To avoid water quality impact	Contractor	All construction sites where practicable	Construction stage	• Waste Disposal Ordinance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Water Qu	ality (Opera	tional Phase)					
S5.6.10	W10	 The following mitigation measures will be implemented to TCV East, North and West SPS, upgraded CMRSPS, proposed TCE West SPS and TCE East SPS 100% standby pump capacity with spare pump of 50% pump capacity Dual-feed power supply Wet well storage providing up to 6-hours ADWF capacity (equivalent to about 4 hours of response time during peak flow condition); and Emergency communication mechanism amongst relevant government departments. 	To prevent the impact due to the emergency discharge at TCW and TCE		Proposed Sewage Pumping Station at TCW and TCE	Operational Stage	• DSD's Sewerage Manual
S5.6.10	W11	 The following mitigation measures will be implemented to gravity sewers and rising mains Adopt high density polyethylene (HDPE) pipe for proposed gravity sewers and rising mains. Further protection on proposed rising mains with concrete surround will be provided to mitigate the risk of bursting. 	To minimize the risk of bursting and hence bursting discharge from gravity sewers and rising mains	DSD	Proposed rising mains within TCE and TCW	Operational Stage	-
S5.6.10	W12	<u>Maintenance Dredging for the Proposed Marina</u> Silt curtain should be deployed to reduce the sediment dispersion from the dredging inside the marina.	To reduce the sediment dispersion	Future operator	Proposed marina at TCE	Operational Stage	-

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Sewage d	und Sewerag	e Treatment Implications					
S6.5.4	SS1	 <u>Emergency Discharge of Proposed TCV West SPS, TCV East</u> <u>SPS, TCV North SPS and Upgraded CMRSPS</u> The following mitigation measures will be implemented to TCV East, North and West SPS, and upgraded CMRSPS: 100% standby pumping capacity within each SPS, with spare pump up to 50% pumping capacity stockpiled in each SPS for any emergency use Twin rising mains Dual-feed power supply Emergency storage facilities up to 6-hours ADWF capacity; and Emergency communication mechanism amongst relevant government departments. 	To prevent the impact due to the emergency discharge at TCW	DSD	Proposed Sewage Pumping Station at TCW	Operational stage	N/A
S6.5.4	SS2	 <u>Emergency Discharge of Proposed TCE West SPS and TCE</u> <u>East SPS</u> In order to minimize the impact due to the emergency discharge, the following precautionary measures shall be included in the design of sewage pumping station: 100% standby pumping capacity within each SPS, with spare pump up to 50% pumping capacity stockpiled in each SPS for any emergency use Twin rising mains Dual-feed power supply Emergency storage facilities up to 6-hours ADWF capacity; and Emergency communication mechanism amongst relevant 	To minimize the impact due to the emergency discharge at TCE	DSD	Proposed Sewage Pumping Station at TCE	Operational stage	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		government departments.					
S6.5.4	SS3	 The following mitigation measures will be implemented to prevent pipe bursting on Rising Mains within TCE and TCW: Strong pipe – use HDPE pipe with welded joints Concrete encasement – concrete surround all rising mains 	To minimize the risk of bursting and hence bursting discharge from gravity sewers and rising mains	DSD	Proposed rising mains within TCE and TCW	Operational stage	N/A

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Waste Ma	anagement (Construction Waste)					
S7.4.1	WM1	 <u>Good Site Practices</u> The following good site practices are recommended throughout the construction activities: nomination of an approved personnel, such as a site manager, to be responsible for the implementation of good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site; training of site personnel in site cleanliness, appropriate waste management procedures and concepts of waste reduction, reuse and recycling; provision of sufficient waste disposal points and regular collection for disposal; imposition of penalty system on Contractors' improper behaviours when illegal dumping and landfilling outside their respective construction sites, i.e. on nearby farmlands and riverbanks, are reported; appropriate measures to minimise windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers; regular cleaning and maintenance programme for drainage systems, sumps and oil interceptors; and the contractor should prepare a Waste Management Plan (WMP) as part of the Environmental Management Plan (EMP) in accordance with the ETWB TC(W) No. 19/2005 for construction phase. The EMP should be submitted to the Engineer for approval. Mitigation measures proposed in the EIA Report and the EM&A Manual should be adopted. 	Minimize waste generation during construction	Contractor	All construction sites	Construction stage	• Waste Disposal Ordinance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
S7.4.1	WM2	 <u>Waste Reduction Measures</u> Waste reduction is best achieved at the planning and design phase, as well as by ensuring the implementation of good site practices. The following recommendations are proposed to achieve reduction: segregate and store different types of waste in different containers, skip or stockpiles to enhance reuse or recycling of materials and their proper disposal; proper storage and site practices to minimize the potential for damage and contamination of construction materials; plan and stock construction materials carefully to minimize amount of waste generated and avoid unnecessary generation of waste; sort out demolition debris and excavated materials from demolition works to recover reusable/recyclable portions (i.e. soil, broken concrete, metal etc.); provide training to workers on the importance of appropriate waste management procedures, including waste reduction, reuse and recycling. 	Reduce waste generation	Contractor	All construction sites	Construction stage	• Waste Disposal Ordinance
S7.4.1	WM3	 <u>Storage of Waste</u> The following recommendation should be implemented to minimize the impacts: waste such as soil should be handled and stored well to ensure secure containment; and Depends on actual site activities, certain locations within the site area would be used for storage of waste to enhance reuse. However, there would not be any designated location for storage of waste, and the storage locations would need to be adjusted to suite actual site conditions; 	Good site practice to minimize the waste generation and recycle the C&D materials as far as practicable so as to reduce the amount for final disposal	Contractor	All construction sites	Construction stage	 Land (Miscellaneous Provisions) Ordinance Waste Disposal Ordinance ETWB TCW No. 19/2005

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
S7.4.1	WM4	 <u>Collection and Transportation of Waste</u> The following recommendation should be implemented to minimize the impacts: remove waste in timely manner; employ the trucks with cover or enclosed containers for waste transportation; obtain relevant waste disposal permits from the appropriate authorities; and disposal of waste should be done at licensed waste disposal facilities. 	Minimize waste impacts from storage	Contractor	All construction sites	Construction stage	• Waste Disposal Ordinance
S7.4.1	WM5	 <u>Excavated and C&D Materials</u> Wherever practicable, C&D materials should be segregated from other wastes to avoid contamination and ensure acceptability at public fill reception facilities or reclamation sites. The following mitigation measures should be implemented in handling the excavated and C&D materials: maintain temporary stockpiles and reuse excavated fill material for backfilling; carry out on-site sorting; make provisions in the Contract documents to allow and promote the use of recycled aggregates where appropriate; and implement a trip-ticket system for each works contract to ensure that the disposal of C&D materials are properly documented and verified, so as to avoid the illegal dumping and landfilling of C&D materials on farmlands/ riverbanks at TCW; 	Minimize waste impacts from excavated and C&D materials	Contractor	All construction sites	Construction Stage	 Land (Miscellaneous Provisions) Ordinance Waste Disposal Ordinance ETWB TCW No. 19/2005 Project Administrative Handbook for Civil Engineering Works, 2012 Edition

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		 On-site sorting of C&D materials Reuse of C&D materials 					
		 Reuse of C&D materials Use of Standard Formwork and Planning of Construction Materials purchasing 					
S7.4.1	WM6	<u>Provision of Wheel Wash Facilities</u> Wheel wash facilities have to be provided at the site entrance before the trucks leaving the works area. Dust disturbance due to the trucks transportation to the public road network could be minimized by such arrangement.	Minimize waste impacts from trucks transportation	Contractor	All construction sites	Construction Stage	N/A
S7.4.1	WM7	Excavated Contaminated Soil As a precaution, it is recommended that standard good site practice should be implemented during the construction phase to minimize any potential exposure to contaminated soils or groundwater.	Remediate contaminated soil	Contractor	All construction sites where applicable	Construction stage	• Practice Guide for Investigation and Remediation of Contaminated Land
S7.4.1	WM8	 <u>Excavated Marine Sediments</u> Reference has been made to the sediment testing results. Possible mitigation measures to handle the contaminated/ uncontaminated sediment are summarized as follows. All construction plant and equipment shall be designed and maintained to minimise the risk of silt, sediments, contaminants or other pollutants being released into the water column or deposited in the locations other than designated location. All vessels shall be sized such that adequate draft is maintained between vessels and the sea bed at all states of the tide to ensure that undue turbidity is not generated by turbulence from vessel movement or propeller wash. Adequate freeboard shall be maintained on barges to 	Handle excavated sediment	Contractor	All construction sites where applicable	Construction stage	• ETWB-TCW 34/2002

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		ensure that decks are not washed by wave action.					
S7.4.1	WM9	 Dumping of excavated sediment Keep and produce logs and other records to demonstrate compliance and ensure journeys are consistent with designated locations Comply with the conditions in the dumping permit. All bottom dumping vessels (hopper barges) shall be fitted with tight fittings seals to their bottom openings to prevent leakage of material. The excavated sediment shall be placed into the disposal pit by bottom dumping. Contaminated marine mud shall be transported by split barge of not less than 750m³ capacity and capable of rapid opening and discharge at the disposal site. Discharge shall be undertaken rapidly and the hoppers shall be closed immediately. Sediment adhering to the sides of the hopper shall not be washed out of the hopper and the hopper shall remain closed until the barge returns to the disposal site. For Type 3 special disposal treatment, sealing of contaminant with geosynthetic containment before dropping into designated mud pit. A geosynthetic containment method is a method whereby the sediments are sealed in geosynthetic containres and, the containers would be dropped into the designated contaminated mud pit where they would be covered by further mud disposal and later by the mud pit capping at the disposal site, thereby fulfilling the requirements for fully confined mud disposal. 	Handle excavated sediment	Contractor	All construction sites where applicable	Construction stage	• ETWB-TCW 34/2002
S7.4.1	WM10	Chemical Waste	Control the chemical waste and ensure proper	Contractor	All construction	Construction stage	• Waste Disposal

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		If chemical wastes are produced at the construction site, the Contractors should register with EPD as chemical waste producer. Chemical wastes should be stored in appropriate containers and collected by a licensed chemical waste collector. Chemical wastes (e.g. spent lubricant oil) should be recycled at an appropriate facility as far as possible, while the chemical waste that cannot be recycled should be disposed of at either the Chemical Waste Treatment Centre, or another licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	storage, handling and disposal.		sites		 (Chemical Waste) General) Regulation Code of Practice on the Packaging, Labelling and Storage of Chemical Waste
S7.4.1	WM11	 <u>General Refuse</u> General refuse should be stored in enclosed bins separately from construction and chemical wastes. Recycling bins should also be placed to encourage recycling. Preferably enclosed and covered areas should be provided for general refuse collection and routine cleaning for these areas should also be implemented to keep areas clean. A reputable waste collector should be employed to remove general refuse on a daily basis. 	Minimize production of the general refuse and avoid odour, pest and litter impacts		All construction sites	Construction stage	• Waste Disposal Ordinance
S7.4.1	WM12	<u>Floating Refuse accumulated along the seawall</u> The floating refuse along seawall should be collected to avoid accumulation. In addition, proper seawall design should be employed, and regular checking and cleaning of floating refuse should be implemented.	Control floating refuse and ensure proper disposal	Contractor	Construction sites along seawall	Construction stage	• Waste Disposal Ordinance
Waste Ma	anagement ((Operational Waste)					
S7.4.2	WM13	Illegal dumping and landfilling	Prevent waste from	Relevant	All	Operational stage	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		As a Development Permission Area (DPA) plan will be issued by the Town Planning Board as a temporary measure before the formal Outline Zoning Plan (OZP) for Tung Chung New Town Extension is adopted, statutory right to guide and control the development and use of land would be authorised. Should there be illegal dumping and landfilling observed/ reported on nearby farmlands and riverbanks, the government authority should take all necessary actions including but not limited to prosecution to remediate the circumstances.	illegal dumping and landfilling	government departments	construction sites		
S7.4.2	WM14	 <u>Municipal Solid Waste</u> A reputable waste collector should be employed to remove general refuse on a daily basis. A 4-bin recycling system for paper, metals, plastics and glass should be adopted together with a general refuse bin. They should be placed in prominent places to promote waste separation at source. All recyclable materials should be collected by recyclers. 	Remove general refuse generated from the proposed development	FEHD/ Relevant Operators	All construction sites	Operational stage	• Waste Disposal Ordinance
S7.4.2	WM15	 <u>Chemical Waste</u> Localized chemical waste storage areas should be located close to the source of waste generation for temporary storage. Drum-type containers with proper labelling should be used to collect chemical wastes for storage at the designated areas. A licensed collector should be employed for the chemical waste collection and the chemical wastes should be disposed at an appropriate facility, such as Chemical Waste Treatment Centre (CWTC) in Tsing Yi. Collection receipts issued by the licensed collector showing the quantities and types of chemical waste taken off-site and details of the treatment facility should be kept for record. 	Reduce chemical waste due to waste handling	Contractors/ Relevant Operators	All construction sites	Operational stage	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
\$7.4.2	WM16	 Floating Refuse accumulated along seawall The floating refuse along seawall should be collected to avoid accumulation. 	Control floating refuse and ensure proper disposal		Along seawall	Operational stage	• Waste Disposal Ordinance
\$7.4.2	WM17	 <u>Floating Refuse inside Marina</u> Floating refuse at the marina will be collected and disposed by the licensed waste collector and as required. 	Reduce floating refuse washing up onto marina by currents and wind	-	Marina	Operational stage	• Waste Disposal Ordinance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Land Co	ntamination						
S8.4.1	LC1	Undertaking environmental Site Inspection (SI) for all potentially contaminated sites as listed in the Contamination Assessment Plan (CAP).	contamination potential before the		All potentially contaminate d sites as listed in the CAP	Prior to the construction stage	 Annex 19 of the TM-EIAO, Guidelines for Assessment of Impact On Sites of Cultural Heritage and Other Impacts (Section 3 : Potential Contaminated Land Issues); Guidance Manual for Use of Risk-Based Remediation Goals (RBRGs) for Contaminated Land Management; Guidance Notes for Contaminated Land Assessment and Remediation; and Practice Guide for Investigation and Remediation of Contaminated Land

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
							• Recommendation s in Health Risk Assessment
\$8.4.2	LC2	Re-appraisal would be required for the surveyed sites, other remaining areas of the PDAs and the works areas for the associated infrastructures because the development of these sites/ areas would only commence a number of years later, which may allow changes in the land usage of these sites and may give rise to potential land contamination issues. The Project Proponent's appointed consultant would prepare a supplementary CAP presenting the findings of the re- appraisal and strategy of the recommended SI, if required, and submit to EPD for review and approval.	To assess the latest site situation and identify any potential additional hot spots and contaminated sites.	5 1		Prior to the construction stage	Ditto
S8.5	LC3	After approval of the supplementary CAP and upon completion of the SI works, the PP should prepare and submit a Contamination Assessment Report (CAR) for all potentially contaminated sites listed in the CAP to EPD for agreement.	Present the findings of SI and evaluate the level and extent of potential contamination	Project Proponent / Detailed Design Consultant / Private developer	All the surveyed sites as listed in the CAP, other remaining areas of the PDAs and works areas for the associated infrastructu res	Prior to the construction stage	Ditto
S.8.5	LC4	Preparation and submission of Remediation Action Plan (RAP) to EPD for agreement if land contamination is confirmed.		Detailed Design	All the surveyed sites as listed in the CAP, other remaining	Prior to the construction stage	Ditto

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
			assessment if remediation is required		areas of the PDAs and works areas for the associated infrastructu res		
S.8.5	LC5	Preparation and submission of Remediation Report (RR) to EPD for agreement.	Demonstrate that the decontamination work is adequate and is carried out in accordance with the endorsed CAR and RAP	Detailed Design Consultant /	All the surveyed sites as listed in the CAP, other remaining areas of the PDAs and works areas for the associated infrastructu res	Prior to the construction stage	Ditto

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Ecology	(Design Ph	ase)	•				
S9.8.1	EC1	Development under the Project have avoided all the recognised sites of conservation importance, including Country Parks,	To protect the recognised sites of conservation importance and habitats inside	PlanD	TCW	RODP	• Not available
S9.8.1	EC2	About 30m buffer zone at the two main branches and the joined outlet section of Tung Chung Stream; and about 20m buffer for the major tributary at Ngau Au of Tung Chung Stream	To protect the Tung Chung Stream	PlanD	Tung Chung Stream	RODP	• Not available
S9.8.2	EC3	Detailed designs should avoid the encroachment of important habitats (e.g. Fung Shui Wood) within the Project Site	To protect the important habitats within Project Site	PlanD	TCW	Design Phase	• Not available
S9.8.2	EC4	Detailed designs of noise barriers to prevent bird collision	To prevent bird collision	HyD	Noise barriers	Design Phase	Guidelines on Design of Noise Barriers
\$9.8.2	EC5	 Measures and suitable designs of sewage pumping stations to prevent emergency discharge accidents in TCE and TCW 100% standby pumping capacity within each SPS, with spare pump up to 50% pumping capacity stockpiled in each SPS for any emergency use Twin rising mains Dual-feed power supply Emergency storage facilities up to 6-hours ADWF capacity; and Emergency communication mechanism amongst relevant government departments. 	To protect the water bodies from impacts due to emergency discharge in TCE and TCW	DSD	Proposed and Upgraded Sewage pumping stations at TCE and TCW	Design Phase	• DSD standards

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Ecology (Constructio	on Phase)					
\$9.8.2	EC6	Adoption of non-dredged reclamation method	To maintain the marine water quality	Contractor	Reclamation area of TCE and Road P1	Construction phase	 EIA Contractual requirements
S9.8.3	EC7	Compensation woodland planting	To compensate loss of woodland, fung shui wood and orchard	Contractor	Uphill of Sheung Lei Pai FSW and Tung Chung Road	phase	 EIA Contractual requirements
\$9.8.3	EC8	Planting of emergent plant	To provide habitats for this Jhora Scrub Hopper, and to compensate the loss of their habitats (wet abandoned agricultural land) in northern section of Fong Yuen	DSD / Contractor	Inside the future River Park	Construction phase	 EIA Contractual requirements
S9.8.3	EC9	Capture-and-translocation exercise	Minimize the potential impact to amphibian species of conservation importance including Romer's Tree Frog and Chinese Bullfrog due to site formation	For public works, provided by the government departments responsible for the construction of those public works or the site formation works . For TCV-1 and	Public works near the eastern branch of Tung Chung Stream, in particular 1) the River Park, 2) the Distributor Road along	Capture-and- translocation exercise before commencement of site formation	 EIA Contractual requirements Explanatory statement of the OZP (for private lots)

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
				TCV-5, where the lands within mostly belong to private lots, the future project proponents of those private lots, via the established mechanism for land transaction application.	branch of Tung Chung Stream, 3) the road upgrade along the existing Shek Mun		
S9.8.3	EC10	Preservation and/or Transplantation of plant species of conservation importance and the following monitoring of preserved/transplanted plant individuals	Protection of plant species of conservation importance	For public works, provided by the government departments responsible for the construction of those public works or the site formation works.	Within construction sites All areas for public works Also be required in private lands	For preservation and/or transplantation, before commencement of site formation.	 Contractual requirements

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
				For TCV-1, where the lands within mostly belong to private lots, the future project proponents of those private lots, via the established mechanism for land transaction application.	in TCV-1.		
S9.8.3	EC11	Defining and maintaining construction site boundaries (including erection of site hoarding, fences etc.)	Screen construction disturbance to the nearby habitats	Contractor	Along the boundary of construction sites and buffer zones of Tung Chung Streams, along the boundary of mature woodland and Fung Shui Wood, and along the boundary between TCV-6 and the middle section of Fong Yuen	commencement of site formation	• EIA • Contractual requirements
S9.8.3	EC12	Protection of Tung Chung Stream	Minimize the potential water pollution due to	Contractor	Within construction	Construction	• EIA

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
			construction of road crossings or other works near Tung Chung Stream		sites	phase	Contractual requirements
S9.8.3	EC13	Implementation of standard site practices	Minimize the potential impact due to dust, noise and runoff during construction phase	Contractor	Within construction sites	Construction phase	 EIA Contractual requirements
S9.8.4	EC14	Adopting Eco-shoreline design	To mitigate the impact of the marine loss	CEDD	Along future seawall	Construction stage	EIAContractual requirements
S9.8.4	EC15	Strict enforcement on no-dumping	Minimise the potential impact to marine habitats	Contractor	In reclamation area as well as all works area and travel route of works vessels	Before and during construction phase	 EIA Contractual requirements
S9.8.4	EC16	Spill response plan	Minimise the potential impact to marine habitats	Contractor	In reclamation area as well as all works area and travel route of works vessels	Before and during construction phase	 EIA Contractual requirements
S.9.8.4	EC17	Control and minimization of marine traffic by including using larger-sized barges, land transportation of materials, reuse of excavation and C&D materials and speed limits &	Reduce marine traffic	Contractor	In reclamation area as well	Construction phase	• EIA • Contractual

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
		regular routes of works vessels			as all works area and travel route of works vessels		requirements
\$9.8.4	EC18	Dolphin exclusion zone and dolphin watching plan	Protection of CWD	Contractor	In reclamation area as well as all works area	Construction phase	 EIA Contractual requirements
\$9.8.4	EC19	Speed limits and regular routes of works vessels; Prepare and submit a "Works Vessel Travel Route Plan"	Protection of CWD	Contractor	In reclamation area as well as all works area	Construction phase	 EIA Contractual requirements
S9.11.1	EC20	Monitoring of compensatory planting woodland	Monitor the survival of trees and establishment of the woodland	CEDD/ Contractor	Areas of compensator y woodland planting	Quarterly for 3 years after completion of planting works	 EIA Contractual requirements
S9.11.1	EC21	Monitoring of translocated amphibians	Monitor the effectiveness of the translocation programme	Public works: Responsible government departments / Contractor Private lots: Private developers	Release sites for translocated amphibians	After translocation exercise. At least three surveys in each release site during the breeding season, preferably monthly between April and June,	 EIA Contractual requirements Explanatory statement of the OZP (for private lots)
\$9.11.1	EC22	Monitoring of preserved / transplanted plant species	Monitor and evaluate	Public works:	Construction	After	• EIA

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
			the effectiveness of the preservation and transplantation programme.	Responsible government departments / Contractor Private lots: Private developers	sites for preserved plants; recipient sites for transplanted plants	transplantation or preservation. For transplanted individuals, for two years, monthly for the first year, and then quarterly for the second year. For the preserved individuals, monthly throughout the construction.	 Contractual requirements Explanatory statement of the OZP (for private lots)
S9.11.1	EC23	Monitoring of Tung Chung Stream and Wong Lung Hang Stream EISs	Protect the EISs	Contractor	Tung Chung Stream and Wong Lung Hang Stream	Construction phase and post- construction phase	 EIA Contractual requirements
9.11.2	EC24	Monitoring of Tung Chung Bay and Tai Ho Wan	Protect Tung Chung Bay and Tai Ho Wan	Contractor	Tung Chung Bay and Tai Ho Wan	Construction phase and post- construction phase	 EIA Contractual requirements
Ecology (Operationa	l Phase)					
S9.11.1	EC25	Monitoring of emergent plant inside River Park	Monitor the survival of emergent plant	DSD/ Contractor	Three months after completion of planting in future River Park	Quarterly for 2 years after completion of planting works	 EIA Contractual requirements

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures		Implementation Agent		Implementation Stage	Requirements and / or standards to be achieved
9.11.2	EC26	Eco-shoreline monitoring	Monitor the colonisation and establishment of fauna and/or flora, water quality, and recruitments of fisheries species	CEDD/ Contractor	Eco- shoreline at TCE PDA reclamation	nhase twice in	 EIA Contractual requirements

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location	Implementation Stage	Requirements and / or standards to be achieved		
Fisheries	sheries								
S10.8	F1	Good Site Practices	To protect the fisheries resources	Contractor	In reclamation area	Construction phase	EIAContractual requirements		
S10.8	F2	No dumping	To protect the fisheries resources	Contractor	In reclamation area	Construction phase	EIAContractual requirements		
S10.8	F3	Spill response plan	To protect the fisheries resources	Contractor	In reclamation area	Construction phase	EIAContractual requirements		
S10.9	F4	Follow the mitigation measures proposed in the water quality assessment for the construction and operation phases of the project.	To protect the fisheries resources	Contractor	Waters in Northern Lantau	Construction phase and operation phase	 EIA Contractual requirements 		
S10.9	F5	Follow the mitigation measure of eco-shoreline in ecology chapter for the construction and operation phases of the project.	To enhance the fisheries resources	Contractor	Eco- shorelines	Construction phase and operation phase	EIAContractual requirements		

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
Landsca	oe and Visua	l (Construction Phase)					
S11.7 MM1	LV1	Optimisation of Construction Areas & Providing Temporary Landscape on Temporary Construction – Construction areas' control shall be enforced, where possible, to ensure that the landscape and visual impacts arising from the construction activities are minimised. It includes reduction of the extent of working areas and temporary works areas, management on storing and using	Minimise the landscape and visual impacts arising from the construction activities	Relevant Government Departments / Private Sector	Through-out Tung Chung West (TCW) area and Tung Chung East (TCE) area	Construction Phase	
		the construction equipment and materials, and consideration of detailed schedules to shorten the construction period. Temporary landscape treatments are considered to be adopted such as applying hydro-seeding on temporary stockpiles and reclamation areas to alleviate the potential impacts.					
S11.7 MM2	LV2	Minimize Topographical Change – The footprint of construction elements and temporary works areas should be optimised to reduce topographical/ landform changes, as well as reduce land take and interference with natural terrain. Where there is a need to significantly cut into the existing landform, retaining walls and cut slopes should be considered as appropriate. To minimize landform changes and land resumption,	Reduce topographical changes and minimize land resumption	Relevant Government Departments / Private Sector	Through-out TCW area	Prior to Construction & Construction Phase	• GEO Publication No/1/2011, Technical Guidelines on Landscape Treatment for Slopes
		earthworks and engineered slopes should be designed to be a visually interesting, compatible with the surrounding landscape and to mimic the natural contouring and terrain as appropriate.					
S11.7 MM3	LV3	Preservation of Potentially Registerable OVTs, Rare and Protective Vegetation – Exiting trees to be retained within the Project Site should be carefully protected during construction. In particular Potentially Registerable OVTs are considered to be preserved according to ETWB	Protect and Preserve Trees	Relevant Government Departments / Private Sector	Onsite, particularly for TCW area	Prior to Construction & Construction Phase	• ETWB TC(W) No.29/2004 and DEVB TC(W)

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		Technical Circular (Works) No. 29/2004. Rare and Protective Vegetation shall be protected following Forestry Regulations (Cap.96) and Protection of Endangered Species of Animals and Plants Ordinance (Cap.586). Detailed Tree Protection Specification shall be provided in the Contract Specification according to DEVB TCW No. 10/2013 Tree Preservation. Following DEVB (GLTM) Guidelines for Tree Preservation during Development, the Contractor shall be required to submit, for approval, a detailed working method statement for the protection of trees prior to undertaking any works adjacent to all retained trees, including trees in contractor's works areas. A detailed tree survey will be carried out for the Tree Removal Application (TRA) process which will be carried out at the later detailed design stage of the Project. The detailed tree survey will propose which trees should be retained, transplanted or felled and will include details of tree protection measures for those trees to be retained.					No.10/2013. • Greening, Landscape and Tree Management Section (GLTM) of the Development Bureau, Guidelines on Tree Preservation during Development (April, 2015)
S11.7 MM4	LV4	Transplanting of Existing Trees – Trees unavoidably affected by the Project works should be transplanted where practical. Trees should be transplanted straight to their final receptor locations within the site and not held in a temporary nursery as far as possible. A detailed Tree Transplanting Specification shall be provided in the Contract Specification, where applicable. Sufficient time for necessary tree root and crown preparation periods shall be allowed in the project programme. A detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with DEVB TCW 10/2013 and LAO PN 7/2007 and final locations of transplanted trees should be agreed prior to commencement of the work. For trees associated with highways e.g. roadside planting	Transplant Trees where suitable for transplantation	Relevant Government Departments / Private Sector	Onsite where possible, otherwise consider offsite locations	Prior to Construction & Construction Phase	 DEVB TC(W) No.10/2013 and LAO PN7/2007 HyD HQ/GN/13 Interim Guidelines for Tree Transplanting Works under Highways Department's Vegetation Maintenance

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		along highways, that are unavoidably affected and should be transplanted. HyD HQ/GN/13 'Interim Guidelines for Tree Transplanting Works under Highways Department's Vegetation Maintenance Ambit' should be referred to.					Ambit • GLTM of the Development Bureau, Guidelines on Tree Preservation during Development (April, 2015)
S11.7 MM5	LV5	Screen hoarding – To reduce negative visual impact, construction site hoarding should be erected around the site to screen pedestrian level views into the construction area from visual sensitive receivers. Hoarding design should consider greening measures such as colour and form should be adopted to improve its visual appearance.	To screen undesirable views of the work site.	Relevant Government Departments / Private Sector	Through-out TCW and TCE areas	Construction Phase	
S11.7 MM6	LV6	Adopting Non-dredge Method for the Reclamation – In order to minimize the potential adverse impacts caused by the reclamation, a number of alternative construction methodologies has been critically examined. After considering all the options such as fully dredged, partially dredged and non-dredged methods for seawall construction and reclamation, non-dredged method for both the seawall construction and reclamation are recommended so as to minimize the generation of dredged sediment.	Minimize the potential adverse impacts caused by the reclamation	Relevant Government Departments / Private Sector	Through-out TCE area	Construction Phase	• Foreshore and Sea-bed (Reclamations) Ordinance (Cap.127)
S11.7 MM7	LV7	Protection of Natural Rivers and Streams – For all the natural rivers and streams inside the development area, in accordance with ETWB TCW 5/2005, consideration of protection measures should be made to minimize any impacts from the construction works, especially those	Protection of Natural Rivers and Streams Minimize the impacts from the construction works	Relevant Government Departments / Private Sector	Through-out TCW area	Prior to Construction & Construction Phase	 EPD ProPECC PN1/94 Construction Site Drainage. DSD Technical

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		development near Tung Chung Stream. According to the latest RODP, a 30m buffer zone will be zoned as "CA". Precast structures or other similar approaches will be used to prevent / minimise any construction works in river and thus to avoid any direct water quality impact. Good site management as stipulated in ProPECC PN1/94 will be fully implemented to avoid polluted liquid or solid wastes from falling into the river waters.					Circular No. 2/2004. • ETWB TC(W) No.5/2005 Protection of natural streams/rivers from adverse impacts arising from construction works
S11.7 MM8	LV8	Preservation of Natural Coastline – The natural coastline along the proposed "RO" of the RODP in TCW should be preserved. The remaining natural shorelines in Tung Chung Bay including sandy shores close to the Tung Chung old pier will be conserved as a Waterfront Park according to the latest RODP.	Preservation of Natural Coastline	Relevant Government Departments	Onsite where possible	Prior to Construction & Construction Phase	
S11.7 MM9	LV9	Providing Natural Rock Material/ Planting for Artificial Seawall – There would be inevitable permanent losses of marine waters (seabed and water column), and direct impacts on existing artificial seawalls due to the reclamation. To minimize the impacts, the design of the future seawall like 'eco-shoreline' could be improved to provide high ecological functions and mitigate the impact of the loss.	Mitigate the impacts on existing artificial seawalls	Relevant Government Departments	Onsite where possible	Prior to Construction & Construction Phase	
		An 'eco-shoreline' is any shoreline which provides beneficial functions to the local ecosystem through a range of active or passive solutions, whilst providing coastal protection. By means of using natural rock materials for artificial seawall and considering to introduce a native vegetation buffer directly behind the top of seawalls as appropriate to create habitat, shelter and a source of food					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		for benefiting both terrestrial and aquatic species along the foreshore, these measures can help to enhance the ecological functions and 'natural-look' of the shoreline, and the potential impacts will be mitigated.					
Landscap	e and Visua	l (Operational Phase)					
S11.7 MM10	LV10	Compensatory Planting – Compensatory planting for felled trees shall be provided to the satisfaction of relevant Government departments. Required numbers and locations of compensatory trees shall be determined and agreed separately with Government during the Tree Removal Application process under DEVB TCW No. 10/2013 and LAO PN 7/2007. The location of compensatory planting is proposed at the potential open areas such as open spaces, amenity areas, open areas of the streetscapes including roadside planting, as well as the open areas within development lots. The species to be planted should be all native species, taken "Characteristics of Major Local Tree Species Propagated by AFCD" as a reference. A search of species to be planted will be conducted in a further detailed stage.	Compensate for trees and shrubs lost due to the Project	Relevant Government Departments / Private Sector	Onsite where possible, particular-ly for TCW area	Prior to Construction, Construction Phase & Maintenance in Operation Phase	 DEVB TC(W) No.10/2013 and LAO PN 7/2007. GLTM of the Development Bureau, Guidelines on Tree Preservation during Development (April, 2015)
S11.7 MM11	LV11	Woodland Restoration – A search of area to mitigate the loss of woodland has been conducted. Priority has been given to the practicability of compensation of woodland within the boundary of RODP. Given the nature of the project is to provide development opportunities to satisfy the needs for the society in general and the aspirations of local communities, compensation of woodland is only possible for the areas beyond the RODP. It is considered that the areas adjoining the woodlands near the existing services reservoirs, and hillsides to the east of Tung Chung Road, would be suitable locations. The advantage of these locations is that there are existing woodlands immediately	Reprovide areas of woodland to compensate for those areas of quality woodland lost	CEDD /AFCD	In areas identified and as agreed with AFCD	Prior to Construction, Construction Phase & Maintenance in Operation Phase	 DEVB Technical Circular Works 10/2013- Tree Preservation GLTM of the Development Bureau, Guidelines on Tree Preservation

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		downhill to the location and the Sheung Ling Pei Fung Shui Wood is further downhill behind Sheung Ling Pei Village, planting new woodland areas adjoining existing woodlands would form an ecological linkage and increase the overall habitat size, and hence would help to enhance the ecological and landscape values in the long run.					during Development (April, 2015)
		It is noted that the compensation trees for landscape impacts will also be planted near the future service reservoirs. The tree species to be planted should be all native species for woodland compensation, and the two areas uphill to Sheung Ling Pei should also make reference to the existing tree species reported in Fung Shui Woods habitat.					
S11.7 MM12	LV12	Screen Planting – Tall screen/buffer trees and shrubs should be planted to screen proposed structures such as roads and buildings. This measure will form part of the compensatory planting and will improve compatibility with the surrounding environment and create a pleasant pedestrian environment.	To screen proposed structures Improve compatibility with the surrounding environment	Relevant Government Departments	Through-out the working sites of the TCW and TCE areas	Prior to Construction, Construction Phase & Maintenance in Operation Phase	• HyD HQ/GN/15– Guidelines for Greening Works along Highways.
S11.7 MM13	LV13	Roadside Planting – Roadside greening is proposed alongside all roads within the possible developments. It will enhance local identity, if theme planting is used, and reduce visual impact through screening. At-grade road planting should be considered along central dividers and on road islands e.g. in the middle of roundabouts.	Soften the hard, straight edges and provide greening along the roads; Improve the visual amenity	Relevant Government Departments	Along new roads, and On appropriate viaducts	Prior to Construction, Construction Phase & Maintenance in Operation Phase	 HyD HQ/GN/15– Guidelines for Greening Works along Highways. Development Bureau Technical Circular Works No.2/2012 – Allocation of Space for Quality

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	-	Location	Implementation Stage	Requirements and / or standards to be achieved
							Greening on Roads

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
S11.7 MM14	LV14	Aesthetic Design of Built Development – The planning of the revised RODP has considered reducing potential visual impacts, enhancing visual amenity and keeping visual corridors. The proposed development will ensure the building massing is compatible with its surroundings. To improve visual amenity, natural building materials could be used on building facades. For example, stone and timber should be considered for architectural features; light earthy tone colours such as shades of green, shades of grey, shades of brown and off-white should be considered for the façade treatment to reduce the visibility of the development components. The form, textures, finishes and colours of the proposed development components should aim to be compatible with the existing surroundings. It would only be implemented for public developments/projects.	Improve visual amenity of the new buildings, keep visual corridors and integrate as possible into the surrounding landscape	Relevant Government Departments	Through-out the TCW and TCE areas	Prior to Construction, Maintenance in Operation Phase	 Hong Kong Planning Standards and Guidelines (HKPSG) issued by the Planning Department (As at Aug 2011); PNAP APP- 152, Sustainable Building Design Guidelines
S11.7 MM15	LV15	 Maximise Greening on Structures – The Government has been actively promoting greening in buildings and structures such as bridges to improve the environment. This includes actively implementing rooftop greening or vertical greening, as where practicable to enhance the cityscape and mitigate the heat island effect in urban areas. For the new built forms in TCW and TCE, it is considered the implementation of the following greening measures could alleviate the landscape and visual impacts of new development and help the development blend in with its surrounding landscape: Sky Garden: Refuge floors or voids in building mass formed by partial removal of floor plates on certain building storeys provise opportunities for sky gardens for the proposed built development. It can allow views through the development to the background formed by the natural hillsides and 	Maximise Greening coverage Enhance visual amenity, create visual corridors and integrate as possible into the surrounding landscape	Relevant Government Departments	On appropriate buildings and structures	Prior to Construction, Construction Phase & Maintenance in Operation Phase	 Development Bureau Technical Circular (Works) No. 3/2012 Site Coverage of Greenery for Government Building Projects PNAP APP- 152, Sustainable Building Design Guidelines

 developmen Circular (C Greenery Developme private dev with inade implemente Design Gui Green Roo completed Hong Kon concepts at recommend application into accoun and TCE. alleviated a enhanced. applicable to and should Sustainable 152. Releva (Works) No 	d Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
completed Hong Kom concepts an recommend application into accoun and TCE. alleviated a enhanced. applicable t and should Sustainable 152. Releva (Works) No	the visual amenity effectively. For public ents, relevant technical document Technical (Works) No. 3/2012 Site Coverage of for Government Building Projects by nent Bureau in 2011 shall be referred to. For evelopments, it is only applicable to sites lequate greening coverage and should be tted in accordance with Sustainable Building uidelines PNAP APP-152.					
Bureau in developmen Circular (Greenery Developme private dev with inade implemente Design Gui	bof: The Architectural Services Department d the Study on Green Roof Application in ong in 2007 which reviewed the latest and design technology of green roof and nded technical guidelines suitable for in in Hong Kong. The study will be taken out to the new buildings to be built in TCW d. Landscape and visual impact can be and the landscape and visual value can be and the landscape and visual value can be . For private development, it is only e to sites with inadequate greening coverage ild be implemented in accordance with le Building Design Guidelines PNAP APP- want technical document Technical Circular No. 3/2012 Site Coverage of Greenery for ent Building Projects by Development in 2011 shall be reference. For public ents, relevant technical document Technical (Works) No. 3/2012 Site Coverage of for Government Building Projects by nent Bureau in 2011 shall be referred to. For evelopments, it is only applicable to sites dequate greening coverage and should be ited in accordance with Sustainable Building uidelines PNAP APP-152. Green: Planting of climbers to grow up					

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		 vertical surfaces where appropriate (e.g. building edges), to soften hard structures and facilities. Relevant technical document Technical Circular (Works) No. 3/2012 Site Coverage of Greenery for Government Building Projects by Development Bureau in 2011 shall be observed. For public developments, relevant technical document Technical Circular (Works) No. 3/2012 Site Coverage of Greenery for Government Building Projects by Development Bureau in 2011 shall be reference. For private development, it is only applicable to sites with inadequate greening coverage and should be implemented in accordance with Sustainable Building Design Guidelines PNAP APP-152. Greening on infrastructure: Planting could be provided on infrastructure such as bridges where appropriate to enhance greenery to soften its built edges. Screen planting could be provided near infrastructure to reduce any undesirable visual impacts. 					
S11.7 MM16	LV16	Noise barrier design – The visual impact of noise mitigation measures will be mitigated by appropriate detailed design, including suitable combination of transparent and sound absorbent materials, appropriate colour selection of panels and supporting structures, or provision of at-grade planting of trees, shrubs and/or climbers camouflage to the barriers, as well as design of supporting structures to incorporate a high level of quality and aesthetics. A combination of transparent panels at top and solid panels at bottom would lighten the visual impact, and at the same time maintain the attractiveness by using colourful panels. The noise barriers would be implemented for District Distributor Roads and Local Distributor Roads at both TCE and TCW area.	Minimize the visual impact from the structures of noise barriers	HyD	Noise barriers within the TCW and TCE areas	Prior to Construction, Construction Phase & Maintenance in Operation Phase	 GLTM of the Development Bureau's Guidelines on Greening of Noise Barriers (April 2012). Guidelines on Design of Noise Barriers by HyD and EPD in 2003

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
S11.7 MM17	LV17	Landscape Treatment for Polders & Attenuation Ponds – There would be polders and attenuation ponds in TCW. While they are primarily used for receiving and treating surface runoff and alleviating the flood risk during heavy rainfall, the design of those has provided an opportunity to have a synergy to enhance both the ecological and landscape values together.	Enhance the landscape and visual value	DSD	Polders & Attenuation Ponds where possible	Prior to Construction, Construction Phase & Maintenance in Operation Phase	
		Depending on detailed design, part of these attenuation ponds (mainly the biofiltration zone) could be refined in an appropriate manner, without compromising its primary functions of treating surface runoff and flood protection, to incorporate ecological and landscape design such as planting of aquatic plants and butterfly foodplant for providing the landscape and ecological enhancement.					
Landscape	e and Visua	l (Construction & Operational Phase)					
S11.7 MM18	LV18	Landscaping on Slopes – Hydro seeding of modified slopes should be done as soon as grading works are completed to prevent erosion and subsequent loss of landscape resources and character. Woodland tree seedlings and/ or shrubs should be planted where gradient and site conditions allow. In addition, landscape planting should be provided for the retaining structures associated with modified slopes where	Enhance landscape value, plant diversity and their visual appearance	CEDD	Onsite, particularly in TCW area	Prior to Construction, Construction Phase & Maintenance in Operation Phase	GEO Publication No.1/2011 Technical Guidelines on Landscape Treatment for Slopes by CEDD in 2011
S11.7 MM19	LV19	condition allow. Landscape Treatment on Channelized Watercourses – For the channelized watercourses in Tung Chung Stream that will be dechannelized, the Drainage Services Department Practice Note No.1/2005 – Guidelines on Environmental Considerations for River Channel Design, should be considered and appropriate measures included ensuring the new watercourses match the existing as far as possible.	Avoid direct impacts on the watercourse Improve the visual amenity	CEDD	The channelized watercourses throughout the TCW area	Prior to Construction, Construction Phase & Maintenance in Operation Phase	• Drainage Services Department Practice Note No.1/2005 – Guidelines on Environmental

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementati on Agent	Location	Implementation Stage	Requirements and / or standards to be achieved
		Measures can include enhancement planting to upgrade the channels as appropriate, including consideration of wetland planting along embankments where appropriate; as well as consideration of the best materials for the channel lining (e.g. gabion).					Considerations for River Channel Design
S11.7 MM20	LV20	Light Control – Construction day and night time lighting should be controlled to minimize glare impact to adjacent VSRs during the construction stage. Street and night time lighting shall also be controlled to minimize glare impact to adjacent VSRs during the operation phase.	Minimize negative glare impact to adjacent VSRs	Relevant Government Departments / Private Sector	Through-out the TCW and TCE areas	Construction Phase & Operation Phase	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Cultural I	Heritage Im	pact (Construction and Operational Phase)					
S.12.5	CHI	 <u>Terrestrial Archaeology</u> Implement rescue excavations/ survey-cum-rescue excavations/ further surveys after land resumption and prior to any construction works (see Figure 14.1 for the locations of rescue excavations/survey-cum-rescue excavations/further survey) 	 Rescue excavations to salvage archaeological data and cultural materials Survey-cum-rescue excavations to better locate and design the follow up rescue excavations Further surveys to obtain sufficient data for formulation of appropriate mitigation measures 	Future Private	After land resumption and prior to any construction works	resumption and prior to any construction works	 Guidelines for Cultural Heritage Impact Assessment TM-EIAO Annex 10 and Annex 19 Antiquities and Monuments Ordinance
S.12.5	CH2	 <u>Terrestrial Archaeology</u> Implement watching brief during construction phase (see Figure 14.1 for the locations of watching brief) 	To identify and record any archaeological material or features revealed during construction phase	Future Private	During construction phase	During construction phase	

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
EM&A P	roject						
S13.2	EM1	An Independent Environmental Checker needs to be employed as per the EM&A Manual.	Control EM&A Performance	Project Proponent	All constructi on sites		 EIAO Guidance Note No.4/2010 TM-EIAO
S13.2 – 13.4	EM2	 An Environmental Team needs to be employed as per the EM&A Manual. Prepare a systematic Environmental Management Plan to ensure effective implementation of the mitigation measures. An environmental impact monitoring needs to be implementing by the Environmental Team to ensure all the requirements given in the EM&A Manual are fully complied with. 	Perform environmental monitoring & auditing	Project Proponent	All constructi on sites		 EIAO Guidance Note No.4/2010 TM-EIAO

Docum ent Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Works Ve	essel Travel	Routes (Extracted from Works Vessel Travel Route Plan subm	itted under Condition 2.13 of	f the EP)			
\$3.2	WVTR1	All works vessels shall be equipped with Global Positional System (GPS) or equivalent automatic identification system (AIS) for real time tracking and monitoring of their travel routing, speed and anchorage points. The system shall be capable to record and analyse the travel routing, speed and anchorage points.	Control EM&A Performance	Contractor	All marine constructi on sites	Construction stage	 EIA Contractual requirements
\$3.3.1	WVTR2	 Once approaching or leaving the entrance of the silt curtain, all vessels will travel at a speed no greater than 8 knots between the site and boundary of The Brothers Marine Park. The vessels can then navigate at normal speed (8-12 knots) after that distance unless other restrictions are imposed. If any dolphins are sighted within 250m of a vessel then the vessel will slow down to a speed no greater than 5 knots for at least 3 minutes after the last sighting. 	Protection of CWD	Contractor	All marine constructi on sites	Construction stage	 EIA Contractual requirements
\$3.3.2	WVTR3	All captains and the supervising staff should undergo training to learn about local dolphins and porpoises. They should be trained to be aware of the protocol for dolphin friendly" vessel operation (refer to the Code of Conduct for Dolphin Watching Activities from AFCD).	Protection of CWD	Contractor	All marine constructi on sites	Construction stage	 EIA Contractual requirements
\$3.3.2	WVTR4	Training on the requirements of the WVTRP would be provided for construction vessels' personnel to follow, which should include the details of the normal operational routings of the construction works vessels and reporting of deviations from the normal operational routings of the construction works vessels. The training course will be given to the licensed vessel captains by the trainers before commencement of work and refreshment course will be provided every quarter.	Protection of CWD	Contractor	All marine constructi on sites	Construction stage	 EIA Contractual requirements

Docum ent Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
Deploym	ent of Silt C	urtain(s) (Extracted from Silt Curtain Deployment Plan submit	tted under Condition 2.16 of	the EP)			
S4	SCD1	Before the start of the installation work, Qualified Ecologists with dolphin monitoring experience shall scan the exclusion zone for at least 30 minutes. If dolphins are observed in the exclusion zone, the installation work shall be delayed until the dolphins left the area.	Protection of CWD	Contractor	All marine constructi on sites	Construction stage	 EIA Contractual requirements
S4	SCD2	If dolphins are observed within the exclusion zone during the installation work, the relevant part of the work shall cease until the dolphins left the area.	Protection of CWD	Contractor	All marine constructi on sites	Construction stage	 EIA Contractual requirements
S5	SCD3	On-board supervisors will be assigned to check the condition of the silt curtain before commencement of works every day. An inspection checklist will be kept on site for record purpose.	Silt Curtain Integrity	Contractor	All marine constructi on sites	Construction stage	 EIA Contractual requirements
S5	SCD4	For the tentative arrangement of silt curtain under adverse weather, the silt curtain will not be temporary removed during adverse weather. However, related works will be suspended immediately if silt curtain is found any damaged.	Silt Curtain Integrity	Contractor	All marine constructi on sites	Construction stage	 EIA Contractual requirements
S5	SCD5	Diver inspection shall be carried out if necessary to inspect the installation and decommission of silt curtain to ensure proper installation and functioning of the silt curtain according to the design drawings. Nearby marine works will resume after repairing of the damaged silt curtains.	Silt Curtain Integrity	Contractor	All marine constructi on sites	Construction stage	 EIA Contractual requirements
S5	SCD6	Refuse around the silt curtain will be collected at regular intervals on a daily basis so that water behind the silt curtains will be kept free from floating debris.	Waste Management	Contractor	All marine constructi on sites	Construction stage	 EIA Contractual requirements

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved	
Post-plan	Post-planting Monitoring and Maintenance (Details to be provided after the submission of Detailed Compensatory Woodland Planting Plan as required under EP Condition 2.22)							

EIA Ref.EM&A Log RefRecommended Mitigation MeasuresObjectives of the Recommended Measures & Mai Concerns to address	Implementation	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
--	----------------	----------------------	-------------------------	---

Use of New Low Noise Road Surfacing Material(s) (Details to be provided after the submission of Plan for Review of Use of New Low Noise Road Surfacing Material(s) as required under EP Condition 2.23)

EIA Ref.	EM&A Log Ref	Recommended Mitigation Measures	Objectives of the Recommended Measures & Main Concerns to address	Implementation Agent	Location / Timing	Implementation Stage	Requirements and / or standards to be achieved
	-	be taken by the Contractor and Dump Truck Drivers in case dition 2.24 of the EP)	of Illegal Dumping and La	ndfilling of C&D M	aterials (Ex	tracted from Waste	Management Plan
\$5.4	WM1	Investigation report will be prepared by the Contractor and submit to ER within 2 working days.	Control EM&A Performance	Contractor	All constructi on sites	Construction stage	• EP • Contractual requirements
S5.4	WM2	The Contractor will discuss with ER for the follow up actions (e.g. warning letter, cease operation, etc.) if required.	Control EM&A Performance	Contractor	All constructi on sites	Construction stage	• EP • Contractual requirements

Annex C

Status of Submissions and Implementation Status of Mitigation Measures under EP

EP	Submission / Implementation Status	Status
Conditio		
2.1	Set up of Community and Professional	Community and Professional Liaison
	Liaison Groups	Groups were set up.
2.1	Complaint Management Plan	Accepted by EPD
2.5	Employment of Qualified Ecologist(s)	Qualified Ecologists have been
		employed to carry out work relating to
		ecological aspects.
2.6	Employment of Surveillance Team	Surveillance Team has been employed
		to conduct regular site inspection.
2.11	Management Organizations	Accepted by EPD
2.12	Construction Works Schedule and	Accepted by EPD
	Location Plans	1 5
2.13	Works Vessel Travel Route Plan	Accepted by EPD
2.14	Eco-shoreline Implementation Plan	To be prepared no later than 3 months
11	Leo shorenne imprenertation i fan	before the commencement of
		construction of the eco-shoreline at
		TCE
15	Dalahin Watahing Plan	-
2.15	Dolphin Watching Plan	Updated Plan was submitted on 21
		September 2018 and accepted by EPD
		on 12 October 2018
2.16	Silt Curtain Deployment Plan	Updated Plan was submitted and
		accepted by EPD on 6 June 2019
2.17	Spill Response Plan	Accepted by EPD
2.18	Plan on Provision of Buffer Zones	To be prepared no later than 3 months
		before the commencement of
		construction works at Tung Chung
		Valley
2.19	River Park Plan	To be prepared no later than 3 months
		before the commencement of
		construction works at Tung Chung
		Valley
2.20	Habitat Enhancement and Translocation	To be prepared no later than 3 months
	Plan for Amphibian Species of	before the commencement of
	Conservation Importance	construction works at Tung Chung
	I I I I I I I I I I I I I I I I I I I	Valley
2.21	Detailed Preservation and/or	To be prepared no later than 3 months
1	Translocation Plan for Plant Species of	before the commencement of
	Conservation Importance	construction works at Tung Chung
	Conservation importance	000
2.22	Detailed Companyatory Woodland	Valley
2.22	Detailed Compensatory Woodland	To be prepared no later than 3 months
	Planting Plan	before the commencement of
		construction works at Tung Chung
		Valley
2.23	Plan for Review of Use of New Low Noise	To be prepared no later than 3 months
	Road Surfacing Material(s)	before the commencement of
		roadworks
2.24	Waste Management Plan	Accepted by EPD
2.25	(i) no dredging of marine sediment shall	Under implementation
	be carried out for the Project	
	(ii) all reclamation filling works shall be	Under implementation
	carried out within a leading seawall of	
	at least 200m; and	
	(iii) silt curtains surrounding the	Under implementation
	reclamation area shall be deployed in	1
	accordance with the Silt Curtain	
	Deployment Plan	
	Deproyment Fian	

Annex C Status of Submissions and Implementation Status of Mitigation Measures under EP

EP Condition	Submission / Implementation Status	Status
2.26	Implement Silt Curtain Deployment Plan	Under implementation
2.20	and Spill Response Plan	onder implementation
2.27	Implement dolphin exclusion zone of	Under implementation
2.27	250m around the reclamation site at Tung	ender implementation
	Chung East during the installation of the	
	perimeter silt curtains and any re-	
	deployment of the perimeter silt curtains	
	by Qualified Ecologist(s)	
2.28	Once the perimeter silt curtains are	Under implementation
	installed or re-deployed, the Dolphin	
	Watching Plan shall be implemented as	
	part of the EM&A programme	
2.29	(i) no underwater blasting and	Under implementation
	percussive piling shall be carried out for	1
	the Project; and	
	(ii) air compressors and other noisy	Under implementation
	equipment mounted on works vessels	1 I
	shall be acoustically-decoupled	
2.30	Implement Works Vessel Travel Route	Under implementation
	Plan	-
	Implement Eco-shoreline Implementation	To be implemented
	Plan	
	Implement Dolphin Watching Plan	Under implementation
2.31	Implement Plan on Provision of Buffer	To be implemented
	Zones, River Park Plan, Habitat	
	Enhancement and Translocation Plan for	
	Amphibian Species of Conservation	
	Importance, Detailed Preservation and/or	
	Translocation Plan for Plant Species of	
	Conservation Importance and Detailed	
	Compensatory Woodland Planting Plan	
2.32	Implement Plan for review of the use of	To be implemented
	new road surfacing material(s)	
	Implement Waste Management Plan	Under implementation
2.33	Install noise barriers and low noise road	To be implemented
	surfacing at the extended Chung Mun	
	Road and Road D3	
	All noise mitigation measures	
	implemented shall be properly	
	maintained during the operation of the	
2.34	above roads	To be implemented
2.34	Implement a deodouriser with an odour removal efficiency of at least 95% shall be	To be implemented
	installed, operated and maintained within	
	each sewage pumping station. The	
	exhaust of the deodouriser shall be	
	oriented away from sensitive receivers;	
	and all odourous facilities of each	
	sewage pumping station shall be	
	servage pumping station shall be	
	enclosed and negative pressure shall be	
	enclosed and negative pressure shall be maintained within the facilities	
2.35	enclosed and negative pressure shall be maintained within the facilities. Enclose all the pumps inside a building	To be implemented

EP	Submission / Implementation Status	Status
Condition		
2.36	(i) a 100% standby pumping capacity shall be installed and maintained	To be implemented
	(ii) a 50% spare pumping capacity shall be installed and maintained	To be implemented
	(iii) dual-feed power supply shall be installed and maintained; and	To be implemented
	(iv) an emergency facility with a 6-hour storage capacity of average dry weather flow shall be installed and maintained.	To be implemented

Annex D

Status of Statutory Environmental Requirements

Contract No.	Description	Location	Ref No.	Status
General	Environmental	TCNTE Works	EP-519/2016	Granted on 9 Aug
	Permit	Area		2016
Contract No. NL/2017/03	Waste Discharge License under	Area A58, near Man Tung Road,	WT00031100-2018	Validity from 19 Jun 2018 to 30 Jun
112/2017/00	License under Water Pollution Control	Tung Chung		2023
	Ordinance	Area WA1, near	WT00031099-2018	Validity from 19
		Ying Tung Road, Tung Chung		Jun 2018 to 30 Jun 2023
	Billing Account	-	Application No.	Approved on 22
	for Disposal of Construction Waste		RT01957	January 2018
	Registration as Chemical Waste	Site Office for TCE	WPN-5213-950- B2528-01	Issued on 28 Feb 2018
	Producer	TCE Site Area	WPN-5213-950-	Issued on 20 Apr
			B2528-02	2018
		Area WA3, near To Kau Wan, Tung Chung	WPN-5213-974- B2528-03	Issued on 9 April 2019
	Construction Noise Permit	Area 58 near Man Tung Road, Tung Chung	GW-RS0564-19	Validity from 4 Jul 2019 to 3 Jan 2020
		Reclamation area	GW-RS0644-19 ⁽¹⁾	Validity from 19 Jul 2019 to 16 Jan 2020
			GW-RS0781-19	Validity from 3 Sep 2019 to 29 Feb 2020
		TCE Works Area near Lantau Toll Plaza	GW-RW0284-19	Validity from 15 Aug 2019 to 14 Feb 2020

Annex D Status of Statutory Environmental Requirements

(1) GW-RS0644-19 was superseded by GW-RS0781-19 since 3 Sep 2019.

Annex E

Air Quality

Annex E1

Calibration Certificates for Air Quality

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT				
CONTACT	: MR K.W. FAN	WORK ORDER	HK1864495	
CLIENT	ENVIROTECH SERVICES CO.			
ADDRESS	: RM113, 1/F, MY LOFT, 9 HOI WING ROAD, TUE	N MUN, N.T. HONG SUB-BATCH	: 1	
	KONG	DATE RECEIVED	: 11-DEC-2018	
		DATE OF ISSUE	: 28-DEC-2018	
PROJECT	:	NO. OF SAMPLES	: 1	
		CLIENT ORDER		

General Comments

- Sample(s) were received in ambient condition.
- Sample(s) analysed and reported on as received basis.
- Calibration was subcontracted to and analysed by Action United Enviro Services.

Position

Signatories

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Kirland Frog **Richard Fung**

General Manager

This is the Final Report and supersedes any preliminary report with this batch number.

Results apply to sample(s) as submitted. All pages of this report have been checked and approved for release.

ALS Technichem (HK) Pty Ltd Partof the ALS Laboratory Group

11/F. Chung Shun Knitling Centre 1 - 3 Wing Yip Street Kwai Chung N.T. Hong Kong Tel. +852 2610 1044 Fax. +852 2610 2021 www.alsglobal.com

WORK ORDER	: HK

• •

SUB-BATCH CLIENT PROJECT : HK1864495

1 ENVIROTECH SERVICES CO.

.

ALS Lab ID	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.	
HK1864495-001	S/N: 235780	Equipments	11-Dec-2018	S/N: 235780	

Equipment Verification Report (TSP)

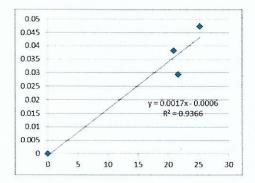
Equipment Calibrated:

Туре:	Laser Dust monitor
Manufacturer:	Sibata LD-3B
Serial No.	235780
Equipment Ref:	Nil
Job Order	HK1864495

Standard Equipment:

Standard Equipment:	Higher Volume Sampler
Location & Location ID:	AUES office (calibration room)
Equipment Ref:	HVS 018
Last Calibration Date:	21 September 2018

Equipment Verification Results:


Testing Date:

17&18 December 2018

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in mg/m ³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr03min	12:20 ~ 14:23	18.0	1022.2	0.038	2557	20.9
2hr14min	09:11 ~ 11:25	18.1	1022.2	0.029	2891	21.6
2hr14min	11:33 ~ 13:47	18.1	1022.2	0.047	3379	25.3

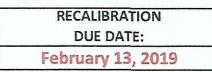
Linear Regression of Y or X

Slope (K-factor):	0.0017		
Correlation Coefficient	0.9678		
Date of Issue	28 December 2018		

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 0.0017 should be applied for TSP monitoring


*If R<0.5, repair or re-verification is required for the equipment

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location :Gold King Industrial Building, Kwai ChungLocation ID :Calibration Room						Date of Calibration: 21-Sep-18 Next Calibration Date: 21-Dec-18		
CONDITIONS								
	Se	a Level I Temp	Pressure erature			Corrected Pressure (mm Hg) 758.7 Temperature (K) 302		
					CALI	BRATI	ON ORIFIC	CE
Make-> TIS Model-> 502 Calibration Date-> 13-Fe								Qstd Slope ->2.02017Qstd Intercept ->-0.03691Expiry Date->13-Feb-19
					(CALIB	RATION	
Plate No.	H20 (L) (in)	H2O (R) (in)	H20 (in)	Qstd (m3/min)		I art)	IC corrected	LINEAR REGRESSION
18 13 10 8 5	18 5.4 5.4 10.8 1.632 5 13 4.3 4.3 8.6 1.459 4 10 3.3 3.3 6.6 1.280 4 8 2.1 2.1 4.2 1.025 3					6 -8 -3 -4 -4	55.56 47.62 42.66 33.73 23.81	Slope = 37.2548 Intercept = -5.5606 Corr. coeff. = 0.9970
Calculatio		$\Omega(\mathbf{P}_2/\mathbf{P}_2)$	td)(Tetd	/Ta)) bl		60.	00 -	FLOW RATE CHART
Calculations : Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b] IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)] Qstd = standard flow rate IC = corrected chart respones I = actual chart response m = calibrator Qstd slope b = calibrator Qstd intercept Ta = actual temperature during calibration (deg K) Pstd = actual pressure during calibration (mm Hg) For subsequent calculation of sampler flow: 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope b = sampler intercept I = chart response Tav = daily average temperature Pav = daily average pressure						.05 Actual chart response (IC) .02 .02 .01	00 00 00	0.500 1.000 1.500 2.000 Standard Flow Rate (m3/min)

The second secon

			Calibration	Certificatio	on Informat	ion		
Cal. Date:	February 13	3, 2018	Rootsi	meter S/N:	438320	Ta:	293	°K
Operator:	Jim Tisch	Jim Tisch				Pa:	763.3	mm Hg
Calibration	Model #:	TE-5025A	Calit	prator S/N:	1612			
								1
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔH	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.3970	3.2 6.3	2.00	4
	3	5	6	1	0.8900	7.9	5.00	4
	4	7	8	1	0.8440	8.7	5.50	4
	5	9	10	- 1	0.7010	12.6	8.00	4
	Ги	1		Data Tabula	tion]
		1						-
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Psto}\right)}$	$\frac{1}{Ta}$		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	ris)	Va	(x-axis)	(y-axis)	
	1.0172	0.7281	1.42		0.9958	0.7128	0.8762	4
	1.0130	1.0130	2.0213		0.9917	0.9917	1.2392	-
	1.0109	1.1358	2.25		0.9896	1.1120	1.3854	-
	1.0098	1.1964	2.37		0.9886	1.1713	1.4530	-
	1.0046	1.4331	2.85		0.9835	1.4030	1.7524	-
	OCTO		2.020		01	m= b=	1.26500	
	QSTD	r=	0.999		QA	r=	0.99988	
				Calculatio	ns]
	Vstd=	ΔVol((Pa-ΔP))/Pstd)(Tstd/T	a)	Va=	ΔVol((Pa-Δ	P)/Pa)	1
	Qstd=	Vstd/∆Time			Qa=]		
		e.	For subsequ	uent flow ra	te calculatio	ns:		
	Qstd=	1/m ((_AH(Pa (Tstd Pstd Ta	-))-b)	Qa=	$1/m\left(\sqrt{\Delta H}\right)$	H(Ta/Pa)-b	
	Standard	Conditions		1				
Tstd	: 298.15	°K				RECA	LIBRATION	
Pstd	- Internet and the second s	mm Hg				ommondo a	nnual recalibrati	on nor 100
Alle antiber		Key	- 11201				nnual recalibrati Regulations Part	
		ter reading (i eter reading), Reference Met	
	and the second s	perature (°K)			A CONTRACT OF		ended Particula	
		ressure (mm				Construction and the second data in the	ere, 9.2.17, page	
b: intercep					L L	ic Autosphi	ci c, J.2.17, page	
m: slope]				

Tisch Environmental, Inc.

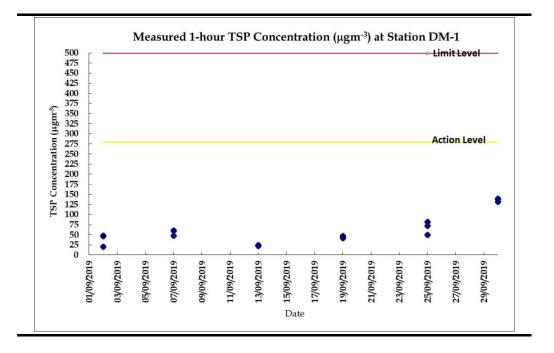
145 South Miami Avenue

Village of Cleves, OH 45002

<u>www.tisch-env.cor</u> TOLL FREE: (877)263-761(FAX: (513)467-900 Annex E2

Monitoring Schedule for Air Quality

Tung Chung New Town Extension (East) Air Quality Monitoring Schedule (September 2019)


Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
<u>1-Sep</u>	Air Quality Monitoring	3-Sed	4-Sed	5-Sep	6-Sep	7-Sep Air Quality Monitoring
8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep
					Air Quality Monitoring	
15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep
				Air Quality Monitoring		
22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep
			Air Quality Monitoring			
29-Sep	30-Sep					
	Air Quality Monitoring					

Annex E3

Monitoring Results for Air Quality

Date	Start Time	Finish Time	Weather	1-hour TSP (μg/m³)
02-09-2019	13:26	14:26	Cloudy	47
02-09-2019	14:26	15:26	Cloudy	20
02-09-2019	15:26	16:26	Cloudy	48
07-09-2019	12:45	13:45	Sunny	48
07-09-2019	13:45	14:45	Sunny	60
07-09-2019	14:45	15:45	Sunny	60
13-09-2019	12:55	13:55	Sunny	24
13-09-2019	13:55	14:55	Sunny	24
13-09-2019	14:55	15:55	Sunny	22
19-09-2019	13:21	14:21	Sunny	42
19-09-2019	14:21	15:21	Sunny	47
19-09-2019	15:21	16:21	Sunny	47
25-09-2019	13:51	14:51	Sunny	82
25-09-2019	14:51	15:51	Sunny	72
25-09-2019	15:51	16:51	Sunny	50
30-09-2019	8:02	9:02	Sunny	132
30-09-2019	9:02	10:02	Sunny	138
30-09-2019	10:02	11:02	Sunny	139

Table E3Data for 1-hr TSP Monitoring at Station DM-1

Annex E4

Event and Action Plan for Air Quality

Encet	Action								
Event	ET	IEC	ER	Contractor					
Action level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	1. Notify Contractor.	 Rectify any unacceptable practice; Amend working methods if appropriate. 					
Action level exceedance for two or more consecutive samples	 Identify source; Inform IEC and ER; Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and ER; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	failure in writing;2. Notify Contractor;3. Ensure remedial measures properly implemented.	 Submit proposals for remedial to ER within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 					

Annex E4 Event and Action Plan for Air Quality

E		Action	n	
Event	ET	IEC	ER	Contractor
Limit level exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
Limit level exceedance for two or more consecutive samples	 Notify IEC, ER, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and ER to discuss the remedial actions to be taken; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Annex F

Noise

Annex F1

Calibration Certificates for Noise

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C192695 證書編號

ITEM TESTED / 送檢項	目	(Job No. / 序引編號: IC19-0995)	Date of Receipt / 收件日期: 17 May 2019
Description / 儀器名稱	:	Precision Acoustic Calibrator	
Manufacturer / 製造商	:	LARSON DAVIS	
Model No. / 型號	:	CAL200	
Serial No. / 編號	:	11333	
Supplied By / 委託者	:	Envirotech Services Co.	
		Room 113, 1/F, My Loft, 9 Hoi Wing Road,	Tuen Mun,
		New Territories, Hong Kong	
TEST CONDITIONS /)	則討	條件	

Temperature / 溫度 $(23 \pm 2)^{\circ}C$ Line Voltage / 電壓 :

Relative Humidity / 相對濕度 : $(50 \pm 25)\%$

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期 26 May 2019 :

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only. The results do not exceed manufacturer's specification. The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via :

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory

- The Bruel & Kjaer Calibration Laboratory, Denmark
- Agilent Technologies / Keysight Technologies
- Fluke Everett Service Center, USA

Tested By 測試	:	H T Wong Technical Officer	-		
Certified By 核證		K CLee Engineer	Date of Issue 簽發日期	:	29 May 2019

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C192695 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.
- 2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment :

Equipment IDDescriptionCertificate No.CL130Universal CounterC183775CL281Multifunction Acoustic CalibratorCDK1806821TST150AMeasuring AmplifierC181288

- 4. Test procedure : MA100N.
- 5. Results :
- 5.1 Sound Level Accuracy

UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
Nominal Value	(dB)	(dB)	(dB)
94 dB, 1 kHz	93.8	± 0.2	± 0.2
114 dB, 1 kHz	113.8		

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value
(kHz)	(kHz)	Spec.	(Hz)
1	1.000	1 kHz ± 1 %	± 1

Remark : The uncertainties are for a confidence probability of not less than 95 %.

Note :

Only the original copy or the laboratory's certified true copy is valid.

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C185974 證書編號

ITEM TESTE Description / 儲 Manufacturer / Model No. / 型 Serial No. / 編弱 Supplied By / 多	器名稱 : 製造商 : 號 : 虎 :	(Job No. / 序引編號: IC1 Sound Level Meter Rion NL-52 00643049 Envirotech Services Co. Room 113, 1/F, My Loft, 9 New Territories, Hong Kon	Hoi Wing Road, Tue		收件日期:29 October 201
TEST CONDI Temperature / ? Line Voltage /	溫度 : (2	式條件 3 ± 2)°C	Relative	Humidity /	/ 相對濕度 : (50±25)%
TEST SPECIE Calibration	FICATIONS	/ 測試規範			
DATE OF TE	ST / 測試日其	钥 : 4 November 2018			
The results do no The results are d The test equipmo - The Governme - The Bruel & K	y to the particu ot exceed manu- etailed in the s ent used for cal- ent of The Hon Gaer Calibratic ologies / Keysi varz Laborator	lar unit-under-test only. ifacturer's specification. (after ad ubsequent page(s). libration are traceable to Nationa g Kong Special Administrative F on Laboratory, Denmark ight Technologies y, Germany	al Standards via :	bration Labor	ratory
Tested By 測試	:	K C Lee Engineer			
Certified By 核證	: _	Chan An C H C Chan	Date of Issu 簽發日期	le :	7 November 2018

written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited – Calibration & Testing Laboratory c/o 4F, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong 輝創工程有限公司 — 校正及檢測實驗所 c/o 香港新界屯門興安里—號四樓 Tel/電話: (852) 2927 2606 Fax/傳真: (852) 2744 8986 E-mail/電郵: callab@suncreation.com

Website/網址: www.suncreation.com

Page 1 of 4

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C185974 證書編號

- 1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.
- 2. Self-calibration using the internal standard (After Adjustment) was performed before the test 6.1.1.2 to 6.3.2.
- 3. The results presented are the mean of 3 measurements at each calibration point.
- 4. Test equipment :

Equipment ID CL280 CL281 <u>Description</u> 40 MHz Arbitrary Waveform Generator Multifunction Acoustic Calibrator

Certificate No. C180024 CDK1806821

- 5. Test procedure : MA101N.
- 6. Results :
- 6.1 Sound Pressure Level
- 6.1.1 Reference Sound Pressure Level

6.1.1.1 Before Adjustment

UUT Setting			Applie	d Value	UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	* 98.6	± 1.1

6.1.1.2 After Adjustment

	UUT Setting				d Value	UUT	IEC 61672
Range	Function	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
(dB)		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
30 - 130	L _A	A	Fast	94.00	1	94.0	± 1.1

6.1.2 Linearity

	UU'	T Setting		Applied	d Value	UUT
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)
30 - 130	L_A	A	Fast	94.00	1	94.0 (Ref.)
				104.00		104.0
				114.00		114.0

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C185974 證書編號

6.2 Time Weighting

UUT Setting			Applie	d Value	UUT	IEC 61672	
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq. (kHz)	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	1	94.0	Ref.
			Slow			94.0	± 0.3

6.3 Frequency Weighting

6.3.1 A-Weighting

	UUT Setting			Appl	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _A	A	Fast	94.00	63 Hz	67.7	-26.2 ± 1.5
					125 Hz	77.8	-16.1 ± 1.5
					250 Hz	85.3	-8.6 ± 1.4
					500 Hz	90.7	-3.2 ± 1.4
	김 것 이번 물				1 kHz	94.0	Ref.
					2 kHz	95.2	$+1.2 \pm 1.6$
					4 kHz	95.0	$+1.0 \pm 1.6$
					8 kHz	92.9	-1.1 (+2.1 ; -3.1)
					12.5 kHz	89.6	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

	UUT	Setting		Appli	ied Value	UUT	IEC 61672
Range (dB)	Function	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
30 - 130	L _C	C	Fast	94.00	63 Hz	93.1	-0.8 ± 1.5
					125 Hz	93.8	-0.2 ± 1.5
					250 Hz	94.0	0.0 ± 1.4
					500 Hz	94.0	0.0 ± 1.4
					1 kHz	94.0	Ref.
					2 kHz	93.8	-0.2 ± 1.6
					4 kHz	93.2	-0.8 ± 1.6
					8 kHz	91.0	-3.0 (+2.1 ; -3.1
					12.5 kHz	87.6	-6.2 (+3.0 ; -6.0

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited Calibration & Testing Laboratory

Certificate of Calibration 校正證書

Certificate No. : C185974 證書編號

Remarks : - UUT Microphone Model No. : UC-59 & S/N : 12128

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value :	94 dB :	63 Hz - 125 Hz	: ± 0.35 dB
		250 Hz - 500 Hz	$: \pm 0.30 \text{ dB}$
		1 kHz	$\pm 0.20 \text{ dB}$
		2 kHz - 4 kHz	: ± 0.35 dB
		8 kHz	: ± 0.45 dB
		12.5 kHz	$\pm 0.70 \text{ dB}$
	104 dB :	1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
	114 dB :	1 kHz	$\pm 0.10 \text{ dB}$ (Ref. 94 dB)
			24

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

Only the original copy or the laboratory's certified true copy is valid.

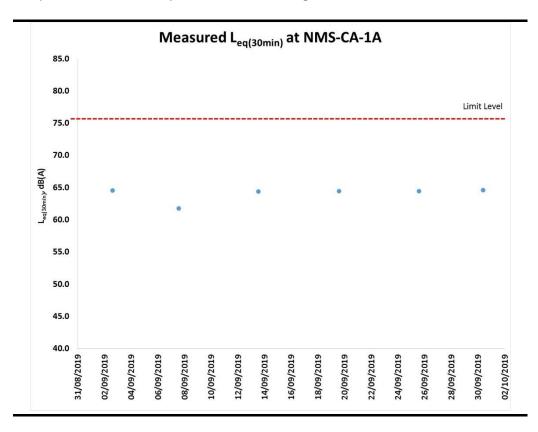
The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory. 本證書所載校正用之測試器材均可溯源至國際標準。局部複印本證書需先獲本實驗所書面批准。 Annex F2

Monitoring Schedule for Noise

Tung Chung New Town Extension (East) Noise Monitoring Schedule (September 2019)

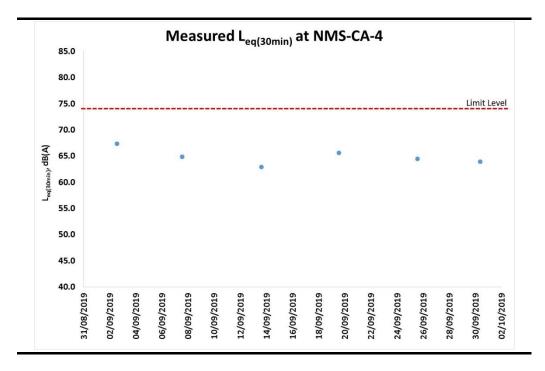
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1-Sep		3-Sep			6-Sep	
	Noise Monitoring					Noise Monitoring
8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep
					Noise Monitoring	
15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep
				Noise Monitoring		
22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep
			Noise Monitoring			
29-Sep	30-Sep					
	Noise Monitoring					


Annex F3

Monitoring Results for Noise

Date & Time	L _{eq (5min)}	L ₁₀	L ₉₀	L _{eq (30min)}
02-09-2019 15:11	65.9	68.8	59.2	
02-09-2019 15:16	65.3	68.5	59.6	04.5
02-09-2019 15:21	64.0	67.1	60.4	
02-09-2019 15:26	64.5	67.3	60.2	64.5
02-09-2019 15:31	64.3	67.7	59.1	
02-09-2019 15:36	62.5	65.7	58.5	
07-09-2019 13:53	60.2	63.3	56.6	
07-09-2019 13:58	61.1	63.9	57.6	
07-09-2019 14:03	63.3	65.3	56.9	01.0
07-09-2019 14:08	61.5	64.6	56.8	61.8
07-09-2019 14:13	62.5	65.4	57.8	
07-09-2019 14:18	61.3	63.8	56.9	
13-09-2019 13:01	63.8	64.8	62.7	
13-09-2019 13:06	65.4	67.3	63.7	
13-09-2019 13:11	64.7	65.5	63.9	
13-09-2019 13:16	65.0	66.1	63.9	64.4
13-09-2019 13:21	63.1	65.4	61.2	1
13-09-2019 13:26	64.0	66.4	61.5	
19-09-2019 14:10	64.7	67.6	60.7	
19-09-2019 14:15	65.6	67.7	59.8	
19-09-2019 14:20	63.9	66.6	60.1	
19-09-2019 14:25	65.1	66.4	60.3	64.4
19-09-2019 14:30	64.2	67.0	59.2	
19-09-2019 14:35	62.4	65.3	58.1	
25-09-2019 14:06	63.8	66.2	59.5	
25-09-2019 14:11	64.6	67.0	60.3	
25-09-2019 14:16	64.7	67.3	58.8	64.4
25-09-2019 14:21	64.3	66.1	58.1	04.4
25-09-2019 14:26	65.5	67.6	59.6	
25-09-2019 14:31	63.2	65.6	58.0	
30-09-2019 9:23	63.0	65.5	58.4	
30-09-2019 9:28	66.8	71.1	58.7	
30-09-2019 9:33	63.2	66.0	57.8	64.6
30-09-2019 9:38	65.1	68.4	58.7	04.0
30-09-2019 9:43	65.2	67.9	58.7	4
30-09-2019 9:48	62.7	66.1	57.9	

Table F3.1Data for Noise Monitoring at Station NMS-CA-1A during Normal Working
Hours (0700-1900 hours)


Figure F3.1 Graphical Presentation for Noise Monitoring at Station NMS-CA-1A

Date & Time	L _{eq (5min)}	L ₁₀	L ₉₀	L _{eq (30min)}
02-09-2019 13:50	67.1	69.3	64.2	
02-09-2019 13:55	68.9	71.6	64.9	67.4
02-09-2019 14:00	66.1	67.6	64.0	
02-09-2019 14:05	67.7	70.2	64.2	07.4
02-09-2019 14:10	67.0	68.9	64.5	
02-09-2019 14:15	67.0	68.9	64.9	
07-09-2019 13:09	63.3	64.8	61.7	
07-09-2019 13:14	64.9	66.4	62.5	
07-09-2019 13:19	66.5	66.9	62.5	04.0
07-09-2019 13:24	66.2	67.4	62.5	64.9
07-09-2019 13:29	63.9	65.3	62.5	1
07-09-2019 13:34	63.5	65.0	61.9	1
13-09-2019 15:01	63.2	66.4	58.1	
13-09-2019 15:06	63.2	66.0	58.6	1
13-09-2019 15:11	61.7	65.0	57.0	
13-09-2019 15:16	64.0	65.1	56.3	62.9
13-09-2019 15:21	61.2	64.3	56.6	1
13-09-2019 15:26	63.7	66.9	56.7	
19-09-2019 13:26	66.0	68.5	62.9	
19-09-2019 13:31	64.8	66.3	62.4	
19-09-2019 13:36	65.3	67.0	63.6	
19-09-2019 13:41	65.0	66.5	62.9	65.6
19-09-2019 13:46	66.8	69.0	63.3	
19-09-2019 13:51	65.6	67.3	63.3	
25-09-2019 13:24	63.6	66.5	60.7	
25-09-2019 13:29	63.7	65.6	61.1	1
25-09-2019 13:34	64.6	66.4	61.2	045
25-09-2019 13:39	63.2	64.8	61.6	64.5
25-09-2019 13:44	66.7	69.6	62.2	1
25-09-2019 13:49	64.0	66.2	61.8	1
30-09-2019 8:38	60.8	66.7	59.7	
30-09-2019 8:43	66.3	69.6	60.2	
30-09-2019 8:48	62.9	65.1	59.2	62.0
30-09-2019 8:53	63.9	66.3	59.3	63.9
30-09-2019 8:58	63.2	64.9	61.1	
30-09-2019 9:03	64.5	66.6	62.2	

Table F3.2Data for Noise Monitoring at Station NMS-CA-4 during Normal Working
Hours (0700-1900 hours)

Figure F3.2 Graphical Presentation for Noise Monitoring at Station NMS-CA-4

Annex F4

Event and Action Plan for Noise

Event		Action				
Event	ET	IEC	ER	Contractor		
Action Level Exceedance	 Notify IEC, ER and Contractor; Carry out investigation; 	1. Review the analysed results submitted by the ET;	1. Confirm receipt of notification of failure in writing;	1. Submit noise mitigation proposals to IEC and ER;		
	 Report the results of investigation to the IEC, ER and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	 Review the proposed remedial measures by the Contractor and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures are properly implemented 	2. Implement noise mitigation proposals.		
Limit Level Exceedance	 Identify source; Inform IEC, ER, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, ER and EPD the causes and actions taken for the exceedances; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; If exceedance stops, cease additional monitoring. 	 Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures. 	 Confirm receipt of notification of failure in writing; Notify Contractor; Require Contractor to propose remedial measures for the analysed noise problem; Ensure remedial measures properly implemented; If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. 	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. 		

Annex F4 Event and Action Plan for Construction Noise

Annex G

Water Quality

Annex G1

Calibration Certificates for Water Quality

Report No.	:	AI060144
Date of Issue	:	25 June, 2019
Page No.	:	1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

: YSI ProDSS (Multi-Parameters)
: YSI (a xylem brand)
: 15M100005
: Jun 25, 2019
: Jun 25, 2019
: Sep 25, 2019

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.02	0.02	Satisfactory
7.42	7.40	-0.02	Satisfactory
10.01	10.01	0.00	Satisfactory

Tolerance of pH should be less than ± 0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer	Displayed Reading (°C)	Tolerance (°C)	Results
15.0	15.1	0.1	Satisfactory
30.0	29.8	-0.2	Satisfactory
48.0	48.1	0.1	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(e) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is referenced to YSI product specifications.

APPROVED SIGNATORY:

LAM Ho-yee, Emma Assistant Laboratory Manager

Report No.	:	AI060144
Date of Issue	:	25 June, 2019
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.45	0.03	-0.42	Satisfactory
2.88	3.26	0.38	Satisfactory
5.23	5.29	0.06	Satisfactory
8.12	7.64	-0.48	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	142.8	-2.8	Satisfactory
0.01	1412	1398	-1.0	Satisfactory
0.1	12890	12934	0.3	Satisfactory
0.5	58670	56361	-3.9	Satisfactory
1.0	111900	111597	-0.3	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.94	-0.6	Satisfactory
20	20.00	0.0	Satisfactory
30	30.14	0.5	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.00		
10	10.07	0.7	Satisfactory
20	20.11	0.5	Satisfactory
100	101.20	1.2	Satisfactory
800	804.30	0.5	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

(8) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

^(f) "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.

Report No.	:	AI060143
Date of Issue	:	25 June, 2019
Page No.	240 270	1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

Name of Equipment	: YSI ProDSS (Multi-Parameters)
Manufacturer	: YSI (a xylem brand)
Serial Number	: 17E100747
Date of Received	: Jun 25, 2019
Date of Calibration	: Jun 25, 2019
Date of Next Calibration(a)	: Sep 25, 2019

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
â.	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.01	0.01	Satisfactory
7.42	7.41	-0.01	Satisfactory
10.01	10.03	0.02	Satisfactory

Tolerance of pH should be less than ± 0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
15.0	15.2	0.2	Satisfactory
30.0	30.0	0.0	Satisfactory
48.0	47.9	-0.1	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(e) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is referenced to YSI product specifications.

APPROVED SIGNATORY:

LAM Ho-yee, Emma Assistant Laboratory Manager

Report No.	:	AI060143
Date of Issue	ŝ	25 June, 2019
Page No.		2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.45	0.03	-0.42	Satisfactory
2.84	3.26	0.42	Satisfactory
5.21	5.29	0.08	Satisfactory
8.03	7.64	-0.39	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	145.1	-1.2	Satisfactory
0.01	1412	1402	-0.7	Satisfactory
0.1	12890	12921	0.2	Satisfactory
0.5	58670	56719	-3.3	Satisfactory
1.0	111900	111688	-0.2	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.96	-0.4	Satisfactory
20	20.13	0.6	Satisfactory
30	30.00	0.0	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.01		Satisfactory
10	10.05	0.5	Satisfactory
20	20.12	0.6	Satisfactory
100	100.90	0.9	Satisfactory
800	805.40	0.7	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

<u>Remark(s): -</u>

- "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form (g)relevant international standards.

Report No.	:	AI080036
Date of Issue	:	06 Aug, 2019
Page No.	:	1 of 2

PART A – CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment	: YSI 6920V2 (Multi-Parameters)
Manufacturer	: YSI (a xylem brand)
Serial Number	: 17H105557
Date of Received	: Aug 02, 2019
Date of Calibration	: Aug 02, 2019
Date of Next Calibration(a)	: Nov 02, 2019

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	3.98	-0.02	Satisfactory
7.42	7.40	-0.02	Satisfactory
10.01	10.01	0.00	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
11.5	11.3	-0.2	Satisfactory
26.0	25.9	-0.1	Satisfactory
51.5	52.0	0.5	Satisfactory

olerance limit of temperature should be less than ± 2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source. (c) (d)

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is referenced to YSI product specifications. (e)

LEE Chun-ning, Desmond Senior Chemist

Report No.	:	AI080036
Date of Issue		06 Aug, 2019
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.01	0.27	0.26	Satisfactory
1.68	1.75	0.07	Satisfactory
4.52	4.81	0.29	Satisfactory
7.84	8.00	0.16	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	152.6	3.9	Satisfactory
0.01	1412	1389	-1.6	Satisfactory
0.1	12890	12452	-3.4	Satisfactory
0.5	58670	58588	-0.1	Satisfactory
1.0	111900	111882	0.0	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	10.08	0.8	Satisfactory
20	20.35	1.8	Satisfactory
30	30.00	0.0	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.00		Satisfactory
10	10.03	0.3	Satisfactory
20	20.11	0.5	Satisfactory
100	100.07	0.1	Satisfactory
800	800.35	0.0	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

"Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
 The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.	1	AI080035
Date of Issue	:	06 Aug, 2019
Page No.	:	1 of 2

PART A – CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

: YSI 6920V2 (Multi-Parameters)
: YSI (a xylem brand)
: 18A104824
: Aug 02, 2019
: Aug 02, 2019
: Nov 02, 2019

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.01	0.01	Satisfactory
7.42	7.44	0.02	Satisfactory
10.01	10.00	-0.01	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
11.5	11.4	-0.1	Satisfactory
26.0	25.9	-0.1	Satisfactory
51.5	52.0	0.5	Satisfactory

Tolerance limit of temperature should be less than ±2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

The results relate only to the calibrated equipment as received (b)

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source. (c)

"Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. The "Tolerance Limit" mentioned is referenced to YSI product specifications. (d)

(e)

LEE Chun-ning, Desmond Senior Chemist

Report No.	:	AI080035
Date of Issue	2	06 Aug, 2019
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

xpected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.01	0.26	0.25	Satisfactory
1.68	1.82	0.14	Satisfactory
4.52	4.83	0.21	Satisfactory
7.84	8.04	0.20	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	144.3	-1.8	Satisfactory
0.01	1412	1394	-1.3	Satisfactory
0.1	12890	12677	-1.7	Satisfactory
0.5	58670	58642	0.0	Satisfactory
1.0	111900	112012	0.1	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	10.06	0.6	Satisfactory
20	20.22	1.1	Satisfactory
30	30.17	0.6	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.01		Satisfactory
10	10.04	0.4	Satisfactory
20	20.09	0.4	Satisfactory
100	100.19	0.2	Satisfactory
800	801.44	0.2	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

Remark(s): -

- ⁽⁾ "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
- (8) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.	:	AI070143
Date of Issue	:	25 July, 2019
Page No.	;	1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B - DESCRIPTION

Name of Equipment	1	YSI 6920V2 (Multi-Parameters)
Manufacturer	:	YSI (a xylem brand)
Serial Number	:	0001C6A7
Date of Received	:	Jul 24, 2019
Date of Calibration	:	Jul 24, 2019
Date of Next Calibration(a)	:	Oct 24, 2019

PART C - REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21c 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.08	0.08	Satisfactory
7.42	7.38	-0.04	Satisfactory
10.01	10.05	0.04	Satisfactory

Tolerance of pH should be less than ±0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
23.0	23.32	0.32	Satisfactory
28.0	27.65	-0.35	Satisfactory
48.0	49.6	1.6	Satisfactory

Tolerance limit of temperature should be less than ± 2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source. "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures. (c)

(d)

The "Tolerance Limit" mentioned is referenced to YSI product specifications. (e)

LEE Chun-ning, Desmond

Senior Chemist

Report No.	:	AI070143
Date of Issue		25 July, 2019
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.02	0.48	0.46	Satisfactory
3.66	3.50	-0.16	Satisfactory
5.70	5.78	0.08	Satisfactory
7.64	7.49	-0.15	Satisfactory

Tolerance limit of dissolved oxygen should be less than ± 0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	140.2	-4.56	Satisfactory
0.01	1412	1386	-1.84	Satisfactory
0.1	12890	12742	-1.15	Satisfactory
0.5	58670	56780	-3.22	Satisfactory
1.0	111900	107432	-3.99	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	9.95	-0.50	Satisfactory
20	19.95	-0.25	Satisfactory
30	30.04	0.13	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance ^(g) (%)	Results
0	0.1		Satisfactory
10	9.8	-2.0	Satisfactory
20	19.4	-3.0	Satisfactory
100	97.2	-2.8	Satisfactory
800	776.3	-3.0	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

~ END OF REPORT ~

<u>Remark(s): -</u>

- ⁰ "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
- ^(g) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Report No.	÷	AI070142
Date of Issue	:	25 July, 2019
Page No.	:	1 of 2

PART A - CUSTOMER INFORMATION

Enovative Environmental Service Ltd. Flat 2207, Yu Fun House, Yu Chui Court, Shatin New Territories, Hong Kong Attn: Mr. Thomas WONG

PART B – DESCRIPTION

: YSI 6920V2 (Multi-Parameters)
: YSI (a xylem brand)
: 00019CB2
: Jul 24, 2019
: Jul 24, 2019
: Oct 24, 2019

PART C – REFERENCE METHODS/ DOCUMENTS FOR THE CALIBRATION

Parameter	Reference Method
pH at 25°C	APHA 21e 4500-H ⁺ B
Dissolved Oxygen	APHA 21e 4500-O G
Conductivity at 25°C	APHA 21e 2510 B
Salinity	APHA 21e 2520 B
Turbidity	APHA 21e 2130 B
Temperature	Section 6 of international Accreditation New Zealand Technical
	Guide no. 3 Second edition March 2008: Working Thermometer Calibration Procedure.

PART D - CALIBRATION RESULTS^(b,c)

(1) pH at 25°C

Target (pH unit)	Displayed Reading ^(d) (pH Unit)	Tolerance ^(e) (pH Unit)	Results
4.00	4.02	0.02	Satisfactory
7.42	7.39	-0.03	Satisfactory
10.01	10.04	0.03	Satisfactory

Tolerance of pH should be less than ± 0.20 (pH unit)

(2) Temperature

Reading of Ref. thermometer (°C)	Displayed Reading (°C)	Tolerance (°C)	Results
23.0	22.62	0.38	Satisfactory
28.0	27.56	-0.44	Satisfactory
48.0	48.9	0.9	Satisfactory

Tolerance limit of temperature should be less than ± 2.0 (°C)

~ CONTINUED ON NEXT PAGE ~

Remark(s): -

(a) The "Date of Next Calibration" is recommended according to best practice principals as practiced by QPT or quoted form relevant international standards.

(b) The results relate only to the calibrated equipment as received

(e) The performance of the equipment stated in this report is checked with independent reference material and results compared against a calibrated secondary source.

(d) "Displayed Reading" denotes the figure shown on item under calibration/ checking regardless of equipment precision or significant figures.

(e) The "Tolerance Limit" mentioned is referenced to YSI product specifications.

LEE Chun-ning, Desmond Senior Chemist

Report No.	:	AI070142
Date of Issue	:	25 July, 2019
Page No.	:	2 of 2

PART D - CALIBRATION RESULTS (Cont'd)

(3) Dissolved Oxygen

Expected Reading (mg/L)	Displayed Reading (mg/L)	Tolerance (mg/L)	Results
0.02	0.04	0.02	Satisfactory
3.66	3.56	-0.10	Satisfactory
5.70	5.86	0.16	Satisfactory
7.64	7.5	-0.14	Satisfactory

Tolerance limit of dissolved oxygen should be less than ±0.50 (mg/L)

(4) Conductivity at 25°C

Conc. of KCl (M)	Expected Reading (µS/cm)	Displayed Reading (µS/cm)	Tolerance (%)	Results
0.001	146.9	136.8	-6.88	Satisfactory
0.01	1412	1352	-4.25	Satisfactory
0.1	12890	12754	-1.06	Satisfactory
0.5	58670	56354	-3.95	Satisfactory
1.0	111900	106531	-4.80	Satisfactory

Tolerance limit of conductivity should be less than ± 10.0 (%)

(5) Salinity

Expected Reading (g/L)	Displayed Reading (g/L)	Tolerance (%)	Results
10	10.01	0.01	Satisfactory
20	19.90	-0.1	Satisfactory
30	29.82	-0.18	Satisfactory

Tolerance limit of salinity should be less than ± 10.0 (%)

(6) Turbidity

Expected Reading (NTU)	Displayed Reading ^(f) (NTU)	Tolerance(g) (%)	Results
0	0.1		Satisfactory
10	9.6	-4.0	Satisfactory
20	19.9	-0.5	Satisfactory
100	98.4	-1.6	Satisfactory
800	762.9	-4.6	Satisfactory

Tolerance limit of turbidity should be less than ± 10.0 (%)

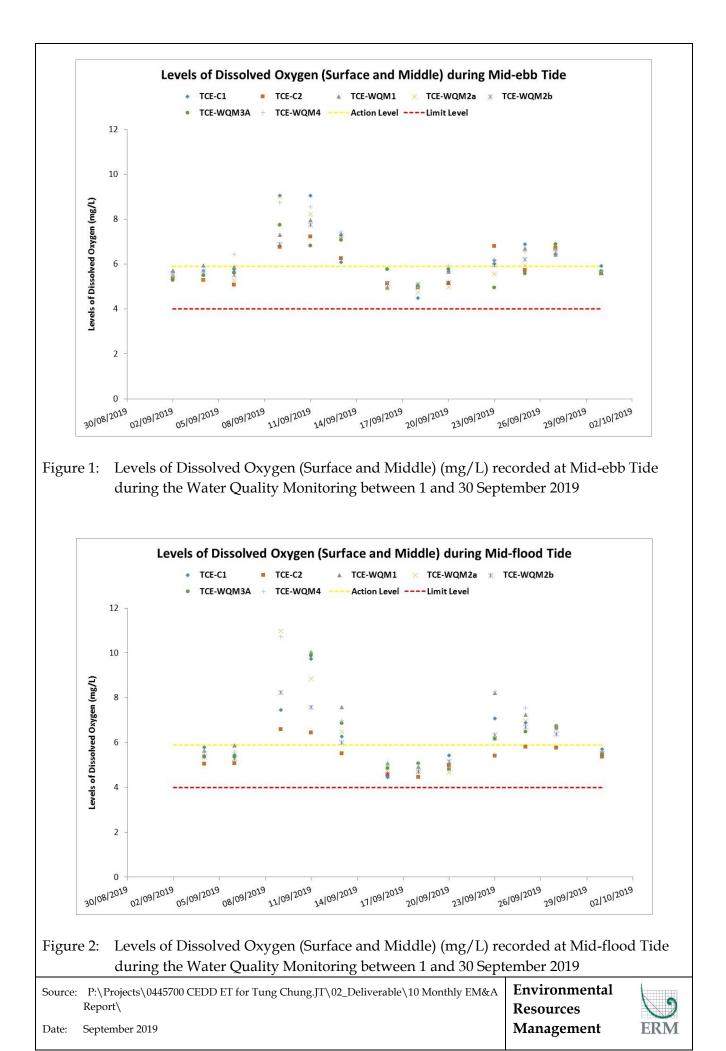
~ END OF REPORT ~

Remark(s): -

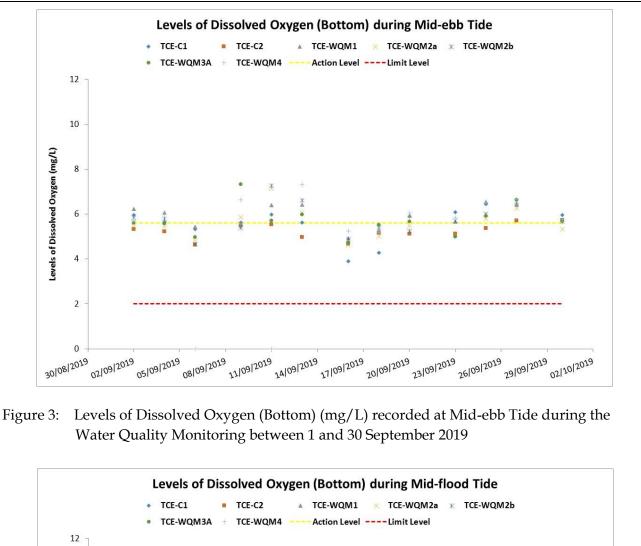
- ¹ "Displayed Reading" presents the figures shown on item under calibration/ checking regardless of equipment precision or significant figures.
- (8) The "Tolerance Limit" mentioned is the acceptance criteria applicable for similar equipment used by Quality Pro Test-Consult Ltd. or quoted form relevant international standards.

Annex G2

Monitoring Schedule for Water Quality


Tung Chung New Town Extension (East) Impact Marine Water Quality Monitoring (WQM) Schedule (September 2019)

Sunday	-	-	Wednesday	Thursday	Friday	Saturday
1-Sep				5-Sep		
	ebb tide 13:25 - 16:55 WQM during mid-flood tide was canceled due to Strong Wind Signal No.3		ebb tide 14:57 - 18:27 flood tide 8:52 - 12:22		ebb tide 16:57 - 20:27 flood tide 11:32 - 15:02	
8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep
	ebb tide 8:14 - 11:44 flood tide 16:00 - 19:30		ebb tide 9:47 - 13:17 flood tide 16:59 - 20:29		ebb tide 11:00 - 14:30 flood tide 17:48 - 21:18	
15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep
	ebb tide 12:28 - 15:58 flood tide 6:12 - 9:42		ebb tide 13:28 - 16:58 flood tide 7:30 - 11:00		ebb tide 14:44 - 18:14 flood tide 9:11 - 12:41	
22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep
	ebb tide 5:25 - 8:55 flood tide 18:18 - 21:00		ebb tide 9:00 - 11:41 flood tide 15:40 - 19:10		ebb tide 10:02 - 13:32 flood tide 16:51 - 20:21	
29-Sep	30-Sep					
	ebb tide 12:19 - 15:49 flood tide 6:01 - 9:31					


Remark:

Pickup time and place of 1st tide: 15 min before tidal window at Sham Tseng pier Pickup time and place of 2nd tide: 15 min before tidal window at Tung Chung pier Annex G3

Monitoring Results for Water Quality

ANNEX G3-1

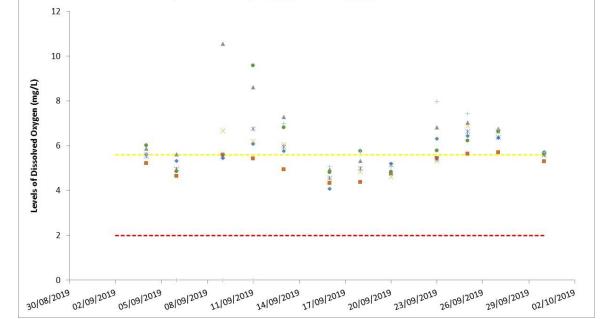
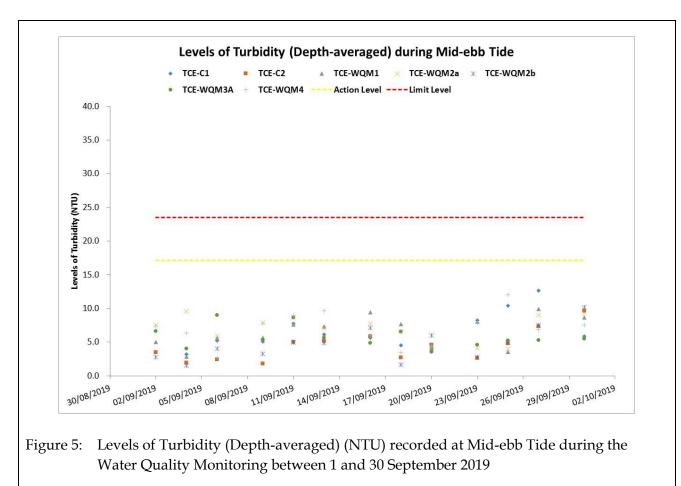
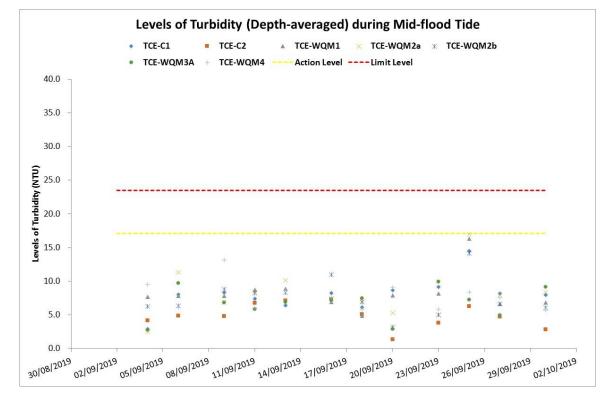




Figure 4: Levels of Dissolved Oxygen (Bottom) (mg/L) recorded at Mid-flood Tide during the Water Quality Monitoring between 1 and 30 September 2019

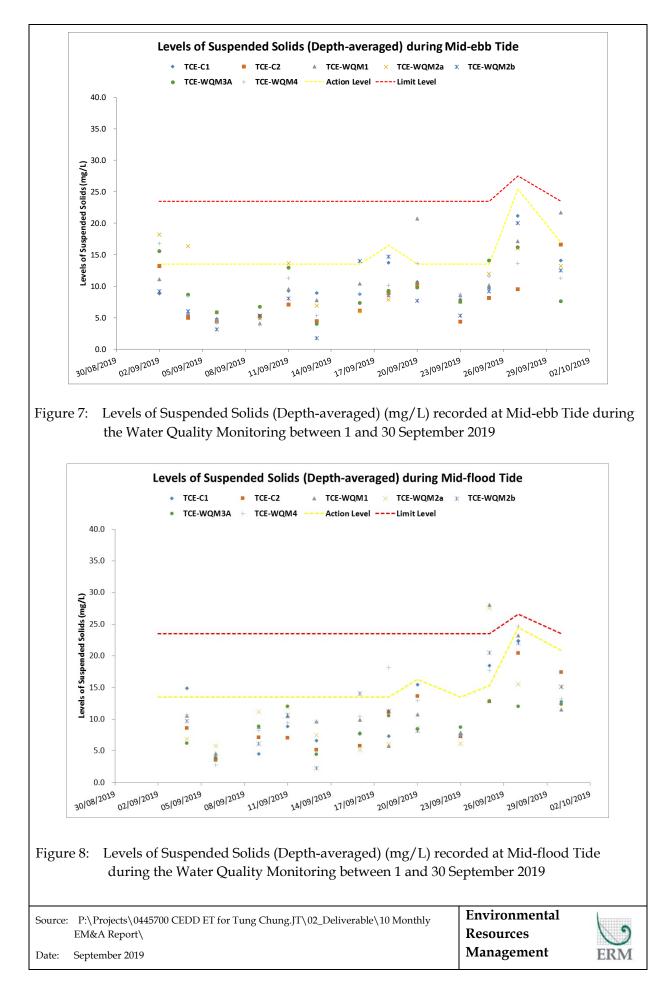

Source	P:\Projects\0445700 CEDD ET for Tung Chung.JT\02_Deliverable\10 Monthly EM&A Report\	Environmental Resources	0
Date:	September 2019	Management	ERM

Figure 6: Levels of Turbidity (Depth-averaged) (NTU) recorded at Mid-flood Tide during the Water Quality Monitoring between 1 and 30 September 2019

Source	: P:\Projects\0445700 CEDD ET for Tung Chung.JT\02_Deliverable\10 Monthly EM&A Report\	Environmental Resources	9
Date:	September 2019	Management	ERM

			Weather			Water Depth		Sampling depth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	
Date	Tide	Station	Condition	Sea Condition	Sampling Time	(m)	Water Level	(m)	Replicate	Temperature	pH	(ppt)	Oxygen (DO)	(%)	(NTU)	(SS)	DO	Turbidity	SS
										(°C)			(mg/L)		. ,	(mg/L)	(mg/L)	(NTU)	(mg/L)
02-09-2019	Mid-Ebb	TCE-C1	Rainy	Rough	15:00	7.8	Surface	1.0	1	27.6	7.9	25.6	5.6	82.6	2.5	8.5			
									2	27.6	7.9	25.6	5.6	82.7	2.5	9.4	5.7		
							Middle	3.9	1	27.6	8.0	25.8	5.7	83.2	3.0	8.0		3.5	8.8
									2	27.6	8.0	25.8	5.7	83.2	2.9	8.7			
							Bottom	6.8	1	27.5	8.0	26.6	5.9	87.3	5.2	9.5	5.9		
									2	27.5	8.0	26.6	6.0	87.6	5.2	8.8			
		TCE-C2	Rainy	Rough	16:48	14.8	Surface	1.0	1	27.6	7.8	23.1	5.4	77.5	3.2	10.3			
									2	27.6	7.8	23.1	5.4	77.4	3.2	10.0	5.3		
							Middle	7.4	1	27.6	7.8	23.1	5.3	76.8	3.4	15.7		3.4	13.2
									2	27.6	7.8	23.1	5.3	76.8	3.5	14.3			
							Bottom	13.8	1	27.6	7.8	23.2	5.3	76.8	3.7	15.2	5.3		
									2	27.6	7.8	23.2	5.3	77.0	3.7	13.8			
		TCE-WQM1	Rainy	Rough	14:20	9.5	Surface	1.0	1	27.7	7.7	23.1	5.6	80.9	4.4	10.0			
									2	27.7	7.7	23.1	5.6	81.0	4.4	9.0	5.7		
							Middle	4.8	1	27.7	7.7	23.3	5.8	84.0	5.1	10.2		5.0	11.1
									2	27.7	7.7	23.3	5.8	84.2	5.1	11.0			
							Bottom	8.5	1	27.7	7.7	23.3	6.2	89.8	5.6	13.9	6.2		
									2	27.7	7.7	23.2	6.2	90.3	5.6	12.4			
		TCE-WQM2a	Rainy	Rough	16:14	8.9	Surface	1.0	1	27.7	7.7	22.9	5.5	79.4	5.1	11.8			
									2	27.7	7.7	22.9	5.5	79.4	5.1	11.8	5.4		
							Middle	4.5	1	27.6	7.7	23.1	5.4	77.7	7.3	14.9		7.5	18.2
									2	27.6	7.7	23.1	5.4	77.7	7.4	14.2		1.5	10.2
							Bottom	7.9	1	27.6	7.7	23.2	5.4	78.4	10.1	29.2	5.4		
									2	27.6	7.7	23.2	5.4	78.5	10.1	27.2			
		TCE-WQM2b	Rainy	Rough	16:28	11.5	Surface	1.0	1	27.6	7.8	23.1	5.5	79.1	2.7	8.9			
1									2	27.6	7.8	23.1	5.5	79.1	2.7	7.9	5.5		
1							Middle	5.8	1	27.6	7.8	23.1	5.5	80.1	3.1	8.6		2.8	9.2
1									2	27.6	7.8	23.1	5.6	80.1	3.1	7.9			
							Bottom	10.5	1	27.6	7.8	23.1	5.8	84.1	2.5	10.1	5.8		
									2	27.6	7.8	23.1	5.8	84.1	2.6	11.6			
		TCE-WQM3A	Rainy	Rough	16:03	3.6	Surface	1.0	1	27.7	7.9	22.0	5.3	75.9	3.8	14.4	5.3		
									2	27.7	7.9	21.9	5.3	75.9	3.8	15.9		6.6	15.6
							Bottom	2.6	1	27.7	7.9	22.8	5.6	80.7	9.4	15.0	5.6		
									2	27.7	7.9	22.9	5.6	81.0	9.4	16.9	2.0		
1		TCE-WQM4	Rainy	Rough	14:04	3.2	Surface	1.0	1	27.7	7.8	23.1	5.5	79.8	7.0	15.5	5.5		
									2	27.7	7.8	23.1	5.5	79.9	7.0	16.5		7.4	16.8
							Bottom	2.2	1	27.7	7.9	23.1	5.7	82.5	7.8	17.6	5.7		
			1						2	27.7	7.9	23.1	5.7	82.7	7.8	17.5	3.7	1	

Remarks: WQM during mid-flood tide was canceled due to Strong Wind Signal No.3

			Weather			Water Depth		Sampling depth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	
Date	Tide	Station	Condition	Sea Condition	Sampling Time	(m)	Water Level	(m)	Replicate	Temperature	pH	(ppt)	Oxygen (DO)	(%)	(NTU)	(SS)	DO	Turbidity	ss
04-09-2019	Mid-Ebb	TCE-C1	Cloudy	Rough	14:58	7.9	Surface	1.0	1	(°C) 28.0	7.9	24.0	(mg/L) 5.8	85.1	3.2	(mg/L) 3.4	(mg/L)	(NTU)	(mg/L)
0109 2019	Mid Loo	ich ci	cioudy	nough	11.00		Surface	1.0	2	28.0	7.9	24.0	5.8	84.5	3.2	3.8			
							Middle	4.0	1	27.6	8.0	25.8	5.6	82.5	2.6	4.8	5.7		
									2	27.6	8.0	25.8	5.6	82.4	2.6	5.7		3.2	5.3
							Bottom	6.9	1	27.5	8.0	28.3	5.6	83.3	3.7	7.5	5.6		
		TCE-C2	Clauda	D1	16.56	15.3	Contras.	1.0	2	27.5	8.0	28.2	5.7	83.8 78.0	3.7	6.5 5.3			
		ICE-C2	Cloudy	Rough	16:56	15.3	Surface	1.0	2	27.8 27.8	7.7 7.7	23.8 23.8	5.4 5.4	78.0	1.5	6.2			
							Middle	7.7	1	27.6	7.7	23.8	5.2	76.0	1.5	5.1	5.3		
							Middle	1.1	2	27.6	7.7	24.5	5.2	76.0	1.7	4.1		1.9	4.9
							Bottom	14.3	1	27.5	7.6	24.9	5.2	75.9	2.6	4.5	5.2	1	
									2	27.5	7.6	24.9	5.2	76.0	2.5	4.4	5.2		
		TCE-WQM1	Cloudy	Rough	15:44	10.2	Surface	1.0	1	28.2	7.9	23.0	5.9	86.6	2.7	4.5			
									2	28.2	7.9	23.0	5.9	86.5	2.7	5.5	5.9		
							Middle	5.1	2	28.1 28.1	7.9	23.6 23.6	5.9 5.9	86.4 86.3	3.5 3.4	5.3 5.3		2.8	5.6
							Bottom	9.2	1	28.1	7.9	23.6	6.1	88.6	2.3	6.3		+	
							Dottom	7.2	2	28.1	7.9	23.7	6.1	88.6	2.3	6.9	6.1		
		TCE-WQM2a	Cloudy	Rough	16:20	8.5	Surface	1.0	1	27.8	7.7	23.7	5.4	78.1	9.3	13.7			
			-	-					2	27.8	7.7	23.7	5.4	78.1	9.3	12.8	5.3		
							Middle	4.3	1	27.6	7.7	24.4	5.2	75.6	11.9	12.7	5.5	9.6	16.4
									2	27.6	7.7	24.4	5.2	75.6	12.0	14.7		5.0	10.4
							Bottom	7.5	2	27.5 27.5	7.6 7.6	24.6 24.6	5.4 5.5	79.0 79.2	7.4	22.7 21.6	5.4		
		TCE-WQM2b	Cloudy	Rough	16:32	11.5	Surface	1.0	2	27.5 28.0	7.6	24.6	5.5	79.2 80.7	7.5	21.6 6.0			
		101-110/1120	cioudy	Rough	10.52	11.5	Juliace	1.0	2	28.0	7.7	22.3	5.6	80.7	1.7	5.0			
							Middle	5.8	1	27.9	7.7	23.4	5.5	80.5	1.4	6.5	5.6		
									2	27.9	7.7	23.4	5.5	80.5	1.4	5.8		1.5	6.0
							Bottom	10.5	1	27.9	7.6	23.6	5.8	84.0	1.5	6.1	5.8	1	
									2	27.9	7.6	23.6	5.8	84.0	1.5	6.7	5.8		
		TCE-WQM3A	Cloudy	Rough	16:09	4.5	Surface	1.0	1	27.9	7.7	22.4	5.5	79.4	4.3	8.2	5.5		
							Bottom	3.5	2	27.9 27.9	7.7	22.4 22.6	5.5	79.5 79.9	4.3 3.7	8.4 9.5		4.1	8.7
							Dottoin	3.3	2	27.9	7.6	22.5	5.6	81.4	3.9	8.5	5.6		
		TCE-WQM4	Cloudy	Rough	15:57	3.6	Surface	1.0	1	28.1	7.6	23.1	5.7	83.2	5.4	5.6			
			-	0					2	28.1	7.6	23.1	5.7	83.1	5.4	6.6	5.7	<i></i>	8.4
							Bottom	2.6	1	27.9	7.5	23.1	6.0	86.6	7.3	11.0	6.0	6.4	8.4
									2	27.9	7.5	23.1	6.0	86.6	7.4	10.3	0.0		
04-09-2019	Mid-Flood	TCE-C1	Rainy	Rough	11:03	7.5	Surface	1.0	1	28.1	7.9	24.0	5.8	85.3	1.7	5.4			
							Middle	3.8	2	28.1 27.8	7.9 8.0	24.0	5.8 5.7	85.3 83.3	1.7 2.9	6.2 10.7	5.8		
							Middle	3.8	2	27.8	8.0	24.4 24.4	5.7	83.4	2.9	10.7		2.9	14.9
							Bottom	6.5	1	27.4	8.0	28.2	5.6	82.9	4.0	27.6		1	
									2	27.4	8.0	28.3	5.7	83.6	4.0	27.5	5.6		
		TCE-C2	Rainy	Rough	9:19	14.2	Surface	1.0	1	27.5	7.8	23.9	5.2	74.7	3.3	8.0			
									2	27.5	7.8	23.9	5.2	74.7	3.3	8.7	5.1		
							Middle	7.1	1	27.4	7.9	24.7	5.0	71.7	4.8	8.6		4.2	8.6
							D . U	13.2	2	27.4 27.3	7.9 7.9	24.7 25.0	5.0 5.2	71.8 75.6	4.9	7.7 9.8		4	
							Bottom	13.2	2	27.3	7.9	25.0	5.2	75.8	4.4	9.8	5.2		
		TCE-WQM1	Rainy	Rough	10:28	9.8	Surface	1.0	1	27.7	7.7	22.6	5.6	80.5	5.7	9.6			
						-			2	27.7	7.7	22.6	5.6	80.6	5.7	10.1	5.7		
				1			Middle	4.9	1	27.8	7.7	22.7	5.7	82.2	7.4	10.7	5./	7.7	10.6
				1					2	27.8	7.7	22.8	5.7	82.5	7.5	9.8		4	
							Bottom	8.8	1	27.7	7.7	23.2	5.9	85.1	9.8	11.3	5.9		
		TCE-WQM2a	Rainy	Rough	9:54	7.3	Surface	1.0	2	27.7 27.8	7.7	23.2 22.9	5.9	85.1 79.7	9.8 2.5	11.9 5.9			
		. CL-WQWIZd	Nanty	Rougn	2.51	1.0	Juilace	1.0	2	27.8	7.8	22.9	5.5	79.7	2.5	5.2			
				1			Middle	3.7	1	27.7	7.8	23.0	5.5	79.8	2.7	8.0	5.5		
									2	27.7	7.8	23.0	5.5	79.7	2.8	7.8		2.5	6.9
				1			Bottom	6.3	1	27.7	7.8	23.1	5.6	81.2	2.1	7.5	5.6		
									2	27.7	7.8	23.1	5.6	81.4	2.1	7.2			
		TCE-WQM2b	Rainy	Rough	9:41	10.3	Surface	1.0	1	27.8	7.6	23.3	5.4	78.2	5.3	7.3			
				1			Middle	5.2	2	27.8 27.7	7.6 7.6	23.3 23.4	5.4 5.4	78.2 77.9	5.3 6.4	8.3 11.5	5.4		
				1			windule	5.2	2	27.7	7.6	23.4	5.4	77.9	6.4	10.6		6.3	9.7
							Bottom	9.3	1	27.7	7.5	23.5	5.5	80.2	7.1	10.2		1	
				1					2	27.7	7.5	23.5	5.5	80.3	7.1	10.4	5.5		
		TCE-WQM3A	Rainy	Rough	10:05	4.1	Surface	1.0	1	27.8	7.6	22.9	5.4	77.6	2.5	6.1	5.4		
				1					2	27.8	7.6	22.9	5.4	77.6	2.6	6.4	J.1	2.8	6.2
							Bottom	3.1	1	27.7	7.4	23.2	6.0	86.5	3.0	6.7	6.0		
		TCE WOLD	D !	$\mathbf{D}_{\mathbf{r}} \cdots \mathbf{t}_{\mathbf{r}}$	10.17	2.0	Sect	10	2	27.7 27.7	7.4	23.2	6.1	87.4	3.0 7.9	5.7			
		TCE-WQM4	Rainy	Rough	10:16	3.9	Surface	1.0	2	27.7	7.7	23.2 23.2	5.6	80.6 80.7	7.9	7.1 7.5	5.6		
							Bottom	2.9	1	27.7	7.6	23.2	5.6	80.9	11.1	14.7	_	9.5	10.7
									2	27.7	7.6	23.3	5.6	81.2	11.2	13.4	5.6		
		1	1		1 I I I I I I I I I I I I I I I I I I I			r		a				n <u> </u>		n		1	

			TAZ th			Water Death		Compliandenth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature	pH	(ppt)	Oxygen (DO)	(%)	(NTU)	(SS)	DO	Turbidity	SS
06-09-2019	Mid-Ebb	TCE-C1	Fine	Moderate	16:57	7.8	Surface	1.0	1	(°C) 27.3	8.1	26.6	(mg/L) 6.0	88.3	2.7	(mg/L) 3.9	(mg/L)	(NTU)	(mg/L)
00-09-2019	MIG-EDD	ICE-CI	rme	wouerate	10.57	7.8	Surface	1.0	2	27.3	8.1	26.5	6.0	88.3	2.7	4.2			
							Middle	3.9	1	26.9	8.2	29.0	5.5	81.1	4.7	4.2	5.8		
									2	26.9	8.2	29.0	5.5	81.1	4.7	4.3		5.3	4.8
							Bottom	6.8	1	26.7	8.1	30.1	5.3	78.9	8.4	5.9	5.3	1	
									2	26.7	8.1	30.1	5.3	79.0	8.4	6.0	5.5		
		TCE-C2	Fine	Moderate	18:49	12.7	Surface	1.0	1	27.2	7.8	26.6	5.4	79.5	1.9	4.8			
									2	27.2	7.8	26.6	5.4	79.4	1.9	5.0	5.1		
							Middle	6.4	1	26.6	7.8	28.2	4.7	68.7	2.5	4.4		2.4	4.3
							Bottom	11.7	2	26.6 26.5	7.8 7.8	28.2 29.0	4.7 4.6	68.7 67.8	2.5 3.0	4.4 3.8		-	
							Dottom	11.7	2	26.5	7.8	29.0	4.6	67.8	3.0	3.5	4.6		
		TCE-WQM1	Fine	Calm	17:36	9.1	Surface	1.0	1	28.2	7.9	25.8	6.1	90.4	3.7	6.0			
		TCL WQ.III	THE	cum	11.00	2.1	Surface	1.0	2	28.2	7.9	25.8	6.1	90.3	3.7	5.5			
							Middle	4.6	1	27.6	7.9	26.2	5.7	82.9	4.9	4.9	5.9		
									2	27.6	7.9	26.2	5.7	83.1	4.8	4.7		5.6	4.7
							Bottom	8.1	1	27.3	7.9	26.4	5.4	79.5	7.8	3.2	5.4	1	
									2	27.3	7.9	26.4	5.4	79.6	8.4	3.7	3.4		
		TCE-WQM2a	Fine	Moderate	18:11	7.4	Surface	1.0	1	27.4	7.8	25.4	5.8	83.8	4.4	6.1			
									2	27.4	7.8	25.4	5.8	83.8	4.4	6.2	5.3		
							Middle	3.7	2	26.7	7.9 7.9	27.1	4.8	70.4	4.8	6.0		5.9	5.9
							Bottom	6.4	2	26.7 26.6	7.9	27.1 27.6	4.8	70.4 70.3	4.8 8.6	5.5 5.6		+	
							Dottom	0.4	2	26.6	7.8	27.6	4.8	70.3	8.6	5.6	4.8		
		TCE-WQM2b	Fine	Moderate	18:24	11.8	Surface	1.0	1	28.0	7.8	22.8	4.8	88.1	2.3	3.9		+	
		TCL TQUILD	THE	modeluie	10.21	11.0	Surface	1.0	2	28.0	7.8	22.8	6.1	87.9	2.3	3.7			
							Middle	5.9	1	27.0	7.8	26.5	5.0	72.4	4.9	3.1	5.5		
									2	27.0	7.8	26.6	5.0	72.3	4.8	3.4		4.1	3.2
							Bottom	10.8	1	26.5	7.9	28.9	4.6	67.9	5.1	2.2	4.7	1	
									2	26.5	7.8	28.9	4.7	68.1	5.1	2.6	4.7		
		TCE-WQM3A	Fine	Calm	18:00	4.3	Surface	1.0	1	27.4	7.8	25.0	5.6	81.8	5.7	4.6	5.6		
									2	27.4	7.8	25.0	5.6	81.8	5.6	5.2	5.0	9.0	5.8
							Bottom	3.3	1	27.2	7.8	25.5	5.0	72.1	12.6	7.0	5.0		
									2	27.2	7.8	25.5	5.0	72.2	12.3	6.5			
		TCE-WQM4	Fine	Calm	17:49	2.9	Middle	1.5	1	28.1	7.8	25.4	6.4	95.0	2.7	4.0	6.4	2.7	4.2
06-09-2019	Mid-Flood	TCE-C1	Fine	Moderate	14:18	7.6	Surface	1.0	2	28.1 27.2	7.8	25.4 27.1	6.4 5.6	94.9 82.6	2.7 3.6	4.4 3.2			
00-09-2019	Mid-Flood	ICE-CI	rne	wouerate	14.10	7.0	Surface	1.0	2	27.2	8.1	27.0	5.6	82.7	3.5	3.0			
							Middle	3.8	1	26.8	8.3	29.1	5.3	77.8	9.6	3.7	5.5		
							maane	5.0	2	26.8	8.3	29.2	5.3	77.7	9.8	3.6		8.0	3.6
							Bottom	6.6	1	26.8	8.2	29.4	5.3	78.5	10.8	4.0		1	
									2	26.8	8.2	29.4	5.3	78.7	11.0	4.3	5.3		
		TCE-C2	Fine	Moderate	11:56	12.4	Surface	1.0	1	27.1	7.8	26.1	5.3	76.3	3.4	4.6			
									2	27.1	7.8	26.1	5.2	76.3	3.5	4.5	5.1		
							Middle	6.2	1	26.7	7.9	26.9	4.9	71.0	4.4	3.6	5.1	4.9	3.6
									2	26.7	7.9	26.9	4.9	71.0	4.4	3.4			5.0
							Bottom	11.4	1	26.5	8.0	29.0	4.7	68.0	6.7	2.7	4.7		
		TCE-WQM1	Fine	Calm	13:11	8.8	Surface	1.0	2	26.5 28.2	8.0 7.9	29.0 25.3	4.7 6.0	68.2 87.8	6.7 4.1	2.5 2.7		+	
		TCE-WQMI	Fine	Caim	13:11	0.0	Surrace	1.0	2	28.2	7.9	25.3	6.0	87.8	4.1	3.0			
							Middle	4.4	1	28.2	8.0	25.8	5.8	87.8	6.4	5.0	5.9		
							maare	T.+	2	27.6	8.0	25.8	5.8	85.2	6.2	5.5		7.8	4.6
							Bottom	7.8	1	27.3	8.0	26.3	5.6	82.1	13.1	5.7		1	
									2	27.3	8.0	26.3	5.6	82.2	13.1	5.5	5.6		
		TCE-WQM2a	Fine	Moderate	12:36	7.3	Surface	1.0	1	27.3	7.9	25.3	5.5	79.2	7.7	6.4	-		
									2	27.3	7.9	25.3	5.5	79.2	7.7	6.4	5.4		
							Middle	3.7	1	27.2	7.9	25.5	5.3	76.8	13.1	6.6	3.4	11.3	5.8
									2	27.2	7.9	25.5	5.3	76.7	13.7	6.5		4	1.0
							Bottom	6.3	1	26.9	7.9	26.2	5.0	72.1	12.9	4.8	5.0		
		TCE-WQM2b	Fine	Moderate	12:22	11.5	Surface	1.0	2	26.8 27.6	7.9 7.8	26.2 25.5	5.0 5.4	72.2 79.2	12.8 2.7	3.8 5.6		+	
		I CE-WQNI2b	Fine	woderate	12:22	11.5	Surrace	1.0	2	27.6	7.8	25.5	5.4	79.2	2.7	5.6			
							Middle	5.8	1	27.6	7.8	25.5	5.4	79.1	5.6	4.0	5.3		
							windere	5.0	2	27.1	7.8	26.3	5.2	75.0	5.5	3.8		6.4	4.1
							Bottom	10.5	1	27.0	7.9	26.8	5.0	72.4	10.9	2.9		†	
									2	27.0	7.9	26.8	5.0	72.5	10.8	2.5	5.0		
		TCE-WQM3A	Fine	Calm	12:48	4.0	Surface	1.0	1	27.5	7.9	24.8	5.4	78.3	11.2	4.2	5.4	1	
		-		1					2	27.4	7.9	24.8	5.4	77.9	11.2	4.3	5.4	9.7	3.9
1							D		1	27.2	7.9	25.4	4.9	70.9	7.5	3.5		T 2.7	3.7
							Bottom	3.0	1								40		
									2	27.2	7.9	25.4	4.9	70.3	9.1	3.7	4.9		
		TCE-WQM4	Fine	Calm	12:59	2.8	Middle	3.0	2 1 2								4.9 5.6	6.1	2.8

			Weather			Water Depth		Sampling depth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	
Date	Tide	Station	Condition	Sea Condition	Sampling Time	(m)	Water Level	(m)	Replicate	Temperature	pH	(ppt)	Oxygen (DO)	(%)	(NTU)	(SS)	DO (maff)	Turbidity (NTU)	SS
09-09-2019	Mid-Ebb	TCE-C1	Fine	Moderate	11:08	7.1	Surface	1.0	1	(°C) 29.2	7.7	14.4	(mg/L) 10.8	152.8	3.0	(mg/L) 5.3	(mg/L)	(N10)	(mg/L)
									2	29.2	7.7	14.5	10.8	152.4	2.9	6.0	9.0		
							Middle	3.6	1	28.4	7.6	20.1	7.3	104.8	2,4	4.7	9.0	5.1	5.0
									2	28.3	7.6	20.2	7.3	104.5	2.9	4.8			
							Bottom	6.1	2	27.4 27.4	7.6	27.7 27.7	5.6	82.7 83.1	9.6 9.6	4.5	5.6		
		TCE-C2	Fine	Calm	8:58	12.5	Surface	1.0	1	28.7	7.8	20.5	8.1	117.8	1.5	6.3			
									2	28.7	7.9	20.6	8.1	117.5	1.6	6.6	6.8		
							Middle	6.3	1	27.6	8.1	26.1	5.4	79.4	1.7	4.9	6.8	1.8	5.2
									2	27.6	8.1	26.3	5.4	79.0	1.7	4.6		1.0	5.2
							Bottom	11.5	1 2	27.4 27.4	8.1 8.1	27.4 27.3	5.4	79.6 81.9	2.0 2.1	4.6	5.5		
		TCE-WQM1	Fine	Calm	10:17	8.2	Surface	1.0	1	27.4	7.7	27.3	9.3	136.4	3.4	2.9			-
		TCL WQ.III	The	cum	10.17	0.2	Surface	1.0	2	29.0	7.7	21.4	9.3	135.5	3.4	2.6			
							Middle	4.1	1	27.2	7.7	28.3	5.3	78.4	6.2	3.7	7.3	5.7	4.1
									2	27.2	7.7	28.3	5.3	78.6	6.4	4.4		5.7	4.1
							Bottom	7.2	1	27.2	7.7	28.4	5.6	82.0	7.3	5.4	5.6		
		TCE-WQM2a	T ¹	Moderate	9:41	7.8	Conferen	1.0	2	27.2 28.8	7.7 7.0	28.4 20.4	5.6	82.9 145.9	7.2	5.6 4.3			
		TCE-WQM2a	Fine	Moderate	9:41	7.8	Surface	1.0	2	28.8	7.0	20.4	10.1	145.9	2.2	4.5			
							Middle	3.9	1	28.5	6.9	23.2	7.9	116.4	8.5	4.5	9.0		
									2	28.5	6.9	23.1	7.9	116.2	8.3	4.8		7.9	4.9
							Bottom	6.8	1	28.1	6.9	26.7	5.8	86.6	13.0	5.8	5.9	T	
		TOT MON M			0.00	10.0		10	2	28.1	6.9	26.7	5.9	87.4	12.9	5.3	2.2		
		TCE-WQM2b	Fine	Moderate	9:28	10.8	Surface	1.0	1 2	28.7 28.7	6.9 6.9	18.0 18.1	7.8 7.8	111.4 111.0	2.1 2.1	6.5 7.2		1	
							Middle	5.4	2	28.7 28.0	6.9	18.1 23.5	7.8	111.0 86.9	2.1 3.0	7.2	6.9		1
							windule	3.4	2	27.9	6.9	23.5	6.0	86.7	3.3	5.0		3.2	5.3
							Bottom	9.8	1	27.1	6.9	29.8	5.4	79.9	4.3	3.9	5.4	1	
									2	27.1	6.9	29.8	5.4	80.6	4.6	4.4	5.4		
		TCE-WQM3A	Fine	Calm	9:53	3.7	Surface	1.0	1	28.7	6.8	20.2	7.8	112.2	3.3	7.1	7.8		
							Bottom	2.7	2	28.6 28.5	6.8 6.9	20.3 21.5	7.8	112.1 106.2	3.8 7.2	6.7		5.4	6.8
							Dottom	2.7	2	28.5	6.9	21.5	7.3	106.2	7.2	6.7	7.3		
		TCE-WQM4	Fine	Calm	10:05	3.3	Surface	1.0	1	29.1	7.6	22.8	8.7	129.0	5.8	4.1			
									2	29.1	7.6	22.8	8.8	129.1	6.2	3.6	8.7	7.7	3.8
							Bottom	2.3	1	28.8	7.4	24.2	6.7	98.6	9.4	3.6	6.6	1.1	3.8
									2	28.8	7.4	24.2	6.6	98.1	9.4	4.0	0.0		
09-09-2019	Mid-Flood	TCE-C1	Sunny	Moderate	16:01	7.3	Surface	1.0	2	29.1 29.1	8.3 8.3	18.2 18.2	9.0 9.0	129.1 128.8	5.3 5.3	4.4 4.9			
							Middle	3.7	1	29.1	8.4	25.5	6.0	86.9	8.2	4.9	7.5		
							Middle	0.5	2	27.4	8.4	25.4	6.0	86.8	8.5	4.8		8.3	4.5
							Bottom	6.3	1	27.2	8.4	28.4	5.5	80.5	11.1	4.4	5.5	1	
									2	27.2	8.4	28.4	5.5	80.8	11.3	3.8	5.5		
		TCE-C2	Fine	Moderate	18:00	12.5	Surface	1.0	1	28.1	7.7 7.7	24.4	7.9 7.8	115.1	3.0	5.0			
							Middle	6.3	2	28.1 27.3	7.7	24.4 29.1	5.3	114.8 79.3	3.0 4.1	5.2 6.7	6.6		
							windule	0.5	2	27.3	7.6	29.2	5.3	79.2	4.1	6.4		4.8	7.1
							Bottom	11.5	1	27.1	7.6	30.2	5.6	83.0	7.0	10.0	5.6	1	
									2	27.1	7.6	30.2	5.6	83.8	7.1	9.3	5.6		
		TCE-WQM1	Sunny	Moderate	16:44	7.9	Surface	1.0	1	29.8	8.0	21.3	14.9	223.2	6.2	9.4			
							Middle	4.0	2	29.7 29.5	8.0 7.9	21.4 22.3	14.9 13.2	222.4 197.8	6.2 7.8	9.7 8.3	14.1		1
							iviidale	4.0	2	29.5	7.9	22.3	13.2	197.8	7.8	8.5		7.8	8.8
							Bottom	6.9	1	28.8	7.8	23.6	10.6	156.1	9.6	8.7	40.5	1	
									2	28.9	7.8	23.6	10.6	156.3	9.4	8.3	10.6		
		TCE-WQM2a	Fine	Moderate	17:20	7.4	Surface	1.0	1	29.1	7.9	20.4	11.8	172.9	6.5	10.1			
							Middle	3.7	2	29.1 28.5	7.9 7.8	20.4 23.2	11.8	172.9 150.3	6.5 3.7	10.6	11.0		
							Middle	3.7	2	28.5	7.8	23.2 23.2	10.3	150.3 149.6	3.7	10.6		6.8	11.2
							Bottom	6.4	1	28.5	7.7	23.2	6.7	97.7	4.1	12.3		1	
									2	27.9	7.7	24.8	6.7	97.9	10.2	12.2	6.7	1	
		TCE-WQM2b	Fine	Moderate	17:32	10.6	Surface	1.0	1	29.1	7.8	20.7	11.0	161.0	2.8	7.1		1	
									2	29.1	7.8	20.7	11.0	160.8	2.8	7.3	8.2		1
							Middle	5.3	1	27.6	7.7	26.8	5.5	80.5	10.4	5.5		8.8	6.2
							Bottom	9.6	2	27.6 27.4	7.7	26.9 27.6	5.5	80.5 81.5	10.8 13.1	5.8 5.8		4	
							Dottoin	9.0	2	27.4	7.7	27.6	5.6	81.5	13.0	5.5	5.5	1	
		TCE-WQM3A	Sunny	Calm	17:09	3.4	Surface	1.0	1	29.7	7.8	19.6	14.0	207.4	5.3	9.7	110	1	1
		-	-						2	29.7	7.8	19.6	14.0	207.3	5.5	9.1	14.0	6.8	8.9
							Bottom	2.4	1	29.5	7.8	19.9	13.3	197.0	8.2	8.4	13.3	0.8	0.9
									2	29.5	7.8	19.9	13.3	196.6	8.4	8.2	40.0		
		TCE-WQM4	Sunny	Calm	16:57	2.7	Middle	1.4	1	28.9	7.8	21.3	10.7	156.0	13.3	8.4	10.7	13.2	8.2
		1		1	1				2	28.9	7.8	21.3	10.8	157.1	13.1	8.0		1	1

			Weather			Water Depth		Sampling depth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	
Date	Tide	Station	Condition	Sea Condition	Sampling Time	(m)	Water Level	(m)	Replicate	Temperature	pH	(ppt)	Oxygen (DO)	(%)	(NTU)	(SS)	DO	Turbidity	SS
11-09-2019	Mid-Ebb	TCE-C1	Fine	Moderate	13:08	7.7	Surface	1.0	1	(°C) 29.7	8.3	19.6	(mg/L) 11.9	174.7	2.9	(mg/L) 9.1	(mg/L)	(NTU)	(mg/L)
11 07 2017	and Loo	ich ci	T IIIC	modelate	10.00		Surface	1.0	2	29.7	8.3	19.6	11.9	174.5	3.2	9.7			
							Middle	3.9	1	27.8	8.2	26.7	6.2	91.4	6.9	9.2	9.0		
									2	27.8	8.2	26.7	6.2	91.4	7.2	9.4		7.7	9.2
							Bottom	6.7	1	27.7	8.2	27.4	6.0	88.4	12.9	8.9	6.0	Ť	
									2	27.7	8.2	27.4	6.0	88.9	13.2	9.0	0.0		
		TCE-C2	Fine	Moderate	10:40	12.7	Surface	1.0	1	28.6	8.1	23.1	8.6	126.8	2.7	8.7			
									2	28.6	8.1	23.2	8.6	126.2	2.8	9.7	7.2		
							Middle	6.4	1	27.8	8.1	27.9	5.8	86.7	3.1	6.3		5.0	7.1
							Bottom	11.7	2	27.8 27.7	8.1 8.1	27.9 28.7	5.8 5.5	86.3 82.4	3.2 9.1	6.5 5.1		ł	
							Dottom	11.7	2	27.7	8.1	28.6	5.5	82.6	9.1	6.1	5.5		
		TCE-WQM1	Fine	Moderate	12:14	8.0	Surface	1.0	1	29.1	8.1	22.9	9.2	135.8	4.3	8.8			
		TCL WQ.III	T IIIC	modelate		0.0	Surface	1.0	2	29.1	8.1	22.9	9.2	135.6	4.5	9.3			
							Middle	4.0	1	28.1	8.1	24.7	6.7	98.6	7.6	9.8	8.0		
									2	28.1	8.1	24.7	6.7	98.3	7.7	9.1		7.6	9.5
							Bottom	7.0	1	28.0	8.1	25.3	6.4	94.1	10.9	10.6	6.4	t	
									2	28.0	8.1	25.3	6.4	94.4	10.8	9.6	6.4		
		TCE-WQM2a	Fine	Moderate	11:34	7.8	Surface	1.0	1	28.8	8.0	23.8	8.6	126.6	7.7	15.6			
									2	28.8	8.0	23.8	8.6	126.6	7.7	15.3	8.2		
				1			Middle	3.9	1	28.5	8.0	24.5	7.9	116.1	9.6	14.4	-	8.6	13.6
				1			P-H	()	2	28.5 28.2	8.0	24.4	7.9 7.2	116.2	9.9	12.7		ł	1
				1			Bottom	6.8	2	28.2 28.2	8.0 8.0	25.4 25.4	7.2	105.7 105.5	8.5 8.3	11.0 12.6	7.1		
		TCE-WQM2b	Fine	Moderate	11:20	11.2	Surface	1.0	2	28.2 28.7	8.0	25.4	8.2	105.5	8.3 2.9	8.0			
		TCE-WQWI2D	rne	wouerate	11.20	11.2	Surface	1.0	2	28.7	8.4	22.8	8.2	120.5	3.0	8.9			
							Middle	5.6	1	28.4	8.4	23.9	7.3	106.7	5.6	8.3	7.7		
							Middle	0.0	2	28.4	8.4	23.9	7.3	106.7	5.8	7.4		4.9	8.0
							Bottom	10.2	1	28.4	8.3	23.9	7.3	106.6	6.2	7.7		ŧ	
									2	28.4	8.3	23.9	7.3	106.7	6.1	7.9	7.3		
		TCE-WQM3A	Fine	Moderate	11:47	3.5	Surface	1.0	1	28.4	7.9	23.4	6.8	100.3	7.2	9.8	6.8		
									2	28.4	7.9	23.5	6.8	99.7	7.3	8.9	0.6	8.6	13.0
							Bottom	2.5	1	28.2	7.9	24.6	5.7	83.8	10.1	17.5	5.7	0.0	13.0
									2	28.2	7.9	24.6	5.7	84.0	10.0	15.6	5.7		
		TCE-WQM4	Fine	Moderate	12:00	2.7	Middle	1.4	1	28.7	8.0	23.6	8.5	125.9	8.7	10.7	8.5	8.9	11.3
44.00.0040		TOT OF			17.00	7.0	<u> </u>	10	2	28.7	8.0	23.6	8.6	126.0	9.1	11.9			
11-09-2019	Mid-Flood	TCE-C1	Fine	Moderate	17:00	7.2	Surface	1.0	1	29.3	8.3	22.0	10.8	158.8	4.0	8.4			
							Middle	3.6	2	29.3 28.8	8.3 8.3	22.1 24.0	10.7 8.8	158.2 129.5	4.1 5.0	9.2 9.5	9.7		
							Middle	3.0	2	28.8	8.3	24.0	8.7	129.5	5.0	9.5		7.4	8.9
							Bottom	6.2	1	27.8	8.3	27.3	6.1	89.9	13.1	9.2		ł	
							Dottom	0.2	2	27.8	8.2	27.3	6.1	90.2	13.3	8.3	6.1		
		TCE-C2	Fine	Moderate	18:55	12.6	Surface	1.0	1	28.4	7.9	25.2	7.4	109.7	3.9	7.9			
									2	28.2	7.9	25.3	7.3	107.8	3.8	7.2	6.4		
							Middle	6.3	1	27.7	7.9	29.1	5.5	82.7	6.1	7.4	0.4	6.7	7.1
									2	27.7	7.9	29.2	5.5	82.2	6.1	6.7		0.7	7.1
							Bottom	11.6	1	27.6	7.9	29.5	5.4	81.3	10.2	6.1	5.4		
							- 1		2	27.7	7.9	29.4	5.5	81.6	10.2	7.1			
		TCE-WQM1	Fine	Calm	17:39	7.7	Surface	1.0	1	29.8	8.1	22.8	10.8	161.9	6.2	11.1			
				1			MC.1.11	2.0	2	29.7	8.1	22.9	10.8	161.3	7.1	10.5	10.0		
				1			Middle	3.9	2	29.2 29.2	8.0	23.7 23.7	9.3	137.7 137.5	8.4 8.2	10.3 11.4		8.7	10.5
				1			Bottom	6.7	1	29.2	8.0	23.8	9.2	137.5	11.3	9.6		ł	
				1			Dottom	0.0	2	29.1	8.0	23.8	8.6	127.0	11.3	9.9	8.6		
		TCE-WQM2a	Fine	Moderate	18:15	7.5	Surface	1.0	1	29.0	8.0	23.5	9.6	141.7	7.1	13.9			1
				1					2	29.0	8.0	23.5	9.6	141.7	7.1	12.9			
				1			Middle	3.8	1	28.6	8.0	24.3	8.2	120.7	7.8	11.4	8.9	0.5	11.0
				1					2	28.5	8.0	24.6	8.1	119.7	7.8	11.5		8.5	11.9
				1			Bottom	6.5	1	28.1	8.0	25.6	6.2	91.2	10.7	11.2	6.2		
									2	28.1	7.9	25.6	6.2	91.7	10.2	10.4	0.2		
		TCE-WQM2b	Fine	Moderate	18:24	10.5	Surface	1.0	1	28.6	7.9	24.0	8.5	124.8	5.8	6.8			
				1				50	2	28.6	7.9	24.3	8.4	124.3	5.8	6.9	7.6		
				1			Middle	5.3	1	28.2	7.9 7.9	25.8 25.8	6.7	99.1 99.2	6.7	12.2		8.2	10.7
				1			Bottom	9.5	2	28.2 28.2	7.9	25.8	6.7	99.2 99.8	6.4 12.5	13.5		ł	
				1	1		Dottom	9.5	2	28.2 28.2	7.9	25.9	6.8	99.8 100.4	12.5	12.3	6.8		
								1	4									1	1
		TCF-WOM3A	Fine	Calm	18:03	3.5	Surface	10	1	29.3	8.0	22.9	9.9	1471	5.6	13.6			
		TCE-WQM3A	Fine	Calm	18:03	3.5	Surface	1.0	2	29.3 29.3	8.0	22.9	9.9	147.1 145.8	5.6	13.6	9.9		
		TCE-WQM3A	Fine	Calm	18:03	3.5			1 2 1	29.3	8.0	22.9	9.8	145.8	5.7	12.1		5.8	12.0
		TCE-WQM3A	Fine	Calm	18:03	3.5	Surface Bottom	2.5	1 2 1 2								9.9 9.6	5.8	12.0
		TCE-WQM3A TCE-WQM4	Fine	Calm	18:03	3.5			1	29.3 29.2	8.0 8.0	22.9 23.1	9.8 9.6	145.8 142.6	5.7 6.0	12.1 11.1		5.8	9.5

			Weather			Water Depth		Sampling depth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	T
Date	Tide	Station	Condition	Sea Condition	Sampling Time	(m)	Water Level	(m)	Replicate	Temperature (°C)	pH	(ppt)	Oxygen (DO) (mg/L)	(%)	(NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)
13-09-2019	Mid-Ebb	TCE-C1	Fine	Moderate	13:58	7.6	Surface	1.0	1	29.3	7.8	24.0	6.7	99.6	3.8	7.4	(((1192)
									2	29.3	7.8	24.0	6.7	99.2	3.8	7.7	6.1		
							Middle	3.8	1	28.2	7.9 7.9	26.9	5.5	81.6	5.6 5.5	9.0		6.2	8.9
							Bottom	6.6	2	28.2 28.2	7.9	26.9 27.0	5.5	81.7 83.7	5.5	8.5 10.0		-	
							Bottom	0.0	2	28.2	7.9	27.0	5.6	83.9	9.3	11.0	5.6		
		TCE-C2	Fine	Moderate	11:30	13.0	Surface	1.0	1	28.9	8.0	23.8	7.1	104.8	3.9	3.8			
									2	28.9	8.0	23.8	7.1	104.6	4.0	4.8	6.3		
							Middle	6.5	1	28.0 28.0	8.1 8.1	28.0 28.0	5.5 5.4	81.3 81.2	3.9 4.0	4.0 4.9		5.1	4.4
							Bottom	12.0	2	28.0	8.1	28.0	5.0	74.4	4.0	4.9		-	
									2	27.8	8.1	29.3	5.0	74.5	7.5	4.3	5.0		
		TCE-WQM1	Fine	Calm	13:02	9.1	Surface	1.0	1	29.2	7.8	23.9	7.5	111.5	6.0	7.0			
									2	29.2	7.8	23.9	7.5	111.4	6.1	8.0	7.3		
							Middle	4.6	2	29.0 29.0	7.9	24.1 24.1	7.2	107.1 106.8	6.5 6.5	7.9		7.3	7.8
							Bottom	8.1	1	29.0	7.9	24.1	6.4	95.3	9.1	8.3		-	
									2	28.6	7.9	25.0	6.4	95.3	9.9	7.6	6.4		
		TCE-WQM2a	Fine	Moderate	12:25	7.3	Surface	1.0	1	29.5	7.8	24.0	7.4	111.4	5.9	4.4			
									2	29.5	7.8	24.0	7.4	111.4	5.9	5.4	7.1		
							Middle	3.7	1 2	28.9 28.9	7.9 7.9	24.9 24.9	6.8 6.8	102.0 101.7	6.8 6.8	6.8 7.7		7.0	6.9
							Bottom	6.3	1	28.3	7.9	26.6	6.1	90.5	8.5	9.0		-	
									2	28.3	7.9	26.6	6.1	90.5	8.2	8.0	6.1		
		TCE-WQM2b	Fine	Moderate	12:13	11.2	Surface	1.0	1	29.4	7.9	22.9	7.5	110.8	2.6	2.2	-	1	
									2	29.5	7.9	22.9	7.5	110.7	2.6	1.6	7.3		
							Middle	5.6	2	28.9 28.9	8.0 8.0	23.6 23.6	7.0 7.1	104.1 104.4	5.2	1.3		4.9	1.8
							Bottom	10.2	1	28.7	8.0	24.4	6.6	97.8	6.7	2.1		1	
									2	28.7	8.0	24.4	6.6	97.8	6.8	1.5	6.6		
		TCE-WQM3A	Fine	Calm	12:37	4.1	Surface	1.0	1	29.3	7.8	23.0	7.1	105.1	4.1	3.7	7.1		
							P		2	29.3	7.8	23.0	7.1	104.9	4.1	3.5		5.7	4.0
							Bottom	3.1	2	28.6 28.6	7.8 7.8	24.6 24.6	6.0	88.7 88.7	7.3 7.3	3.9	6.0		
		TCE-WQM4	Fine	Calm	12:50	3.2	Surface	1.0	1	29.1	8.0	23.7	7.4	110.4	9.6	6.0			
					2 29.1 8.0 23.7 7.4 110.5 9.8 5.8 7.4	9.6	5.4												
							Bottom	2.2	1	29.1	8.0	23.8	7.3	108.3	9.4	5.1	7.3	5.0	5.4
13-09-2019	Mid-Flood	TCE-C1	Fine	Moderate	17:48	7.2	Surface	1.0	2	29.1 29.1	8.0 7.8	23.9 23.5	7.3 6.5	108.3 96.4	9.7 5.7	4.5	-		
13-09-2019	Mid-Flood	ICE-CI	Fine	Moderate	17:48	7.2	Surrace	1.0	2	29.1	7.8	23.5	6.5	96.4	5.7	6.6			
							Middle	3.6	1	28.8	7.9	24.1	6.1	89.7	6.5	6.1	6.3		
									2	28.8	7.9	24.1	6.1	89.7	6.5	6.7		6.4	6.6
							Bottom	6.2	1	28.5	7.9	25.7	5.8	85.3	7.2	7.3	5.8		
		TCE-C2	Cloudy	Moderate	19:56	11.8	Surface	1.0	2	28.5 28.5	7.9 7.8	25.6 25.6	5.8	85.6 89.3	6.9 4.1	6.9 4.8			
		ICE-C2	Cloudy	woderate	19.30	11.0	Surrace	1.0	2	28.5	7.8	25.6	6.0	89.0	4.1	5.8			
							Middle	5.9	1	27.8	7.9	29.1	5.0	75.1	7.6	4.5	5.5	7.1	5.1
									2	27.8	7.9	29.1	5.0	75.1	7.7	4.9		7.1	5.1
							Bottom	10.8	2	27.8	7.9 7.9	29.2	4.9	73.8	9.4	5.7	4.9		
		TCE-WQM1	Cloudy	Calm	18:34	8.4	Surface	1.0	2	27.8 29.5	7.9	29.2 23.7	4.9 7.6	73.9 114.2	9.6 7.7	5.1 7.7		1	
		102.110.00	cioudy		10.01	0.4	Sumuce	1.0	2	29.5	7.8	23.7	7.6	114.2	7.7	7.1	-	1	
							Middle	4.2	1	29.5	7.8	23.8	7.5	112.5	8.1	8.8	7.6	8.9	9.6
							Interior 1 2 2 7.8 23.8 7.5 112.5 8.1 7.8 Bottom 7.4 1 29.3 7.8 24.0 7.3 108.6 10.9 12.7 2 29.3 7.8 24.0 7.3 108.8 10.7 13.7												
									7.3	1	1								
		TCE-WQM2a	Cloudy	Moderate	19:11	6.7	Surface	1.0	1	29.0	7.8	24.0	6.7	100.0	10.7	7.4		1	
		-							2	29.0	7.8	24.3	6.7	100.2	10.1	8.3	6.5	1	1
							Middle	3.4	1	28.8	7.8	24.8	6.2	92.4	11.5	8.1	0.5	10.1	7.5
							Bottom	5.7	2	28.8 28.6	7.8 7.8	24.8 25.2	6.2	92.4 89.9	11.5 8.6	7.1 7.0		+ .	1
							Dottoin	5.1	2	28.6	7.8	25.2	6.1	90.0	8.6	6.8	6.1	1	1
		TCE-WQM2b	Cloudy	Moderate	19:22	10.6	Surface	1.0	1	28.7	7.8	24.9	6.1	89.8	6.9	3.4		1	
			-						2	28.7	7.8	24.9	6.1	89.8	7.0	2.4	6.0	1	1
							Middle	5.3	1	28.6	7.8 7.8	25.1 25.2	6.0	88.3	8.1	2.3		8.3	2.3
							Bottom	9.6	2	28.6 28.6	7.8	25.2	6.0	88.3 88.3	8.2 9.7	1.5		4	
							Dottoin	2.0	2	28.6	7.8	25.2	6.0	88.3	9.7	2.0	6.0	1	1
		TCE-WQM3A	Cloudy	Calm	18:59	3.7	Surface	1.0	1	29.0	7.8	24.1	6.9	102.1	5.5	4.5	6.9	1	1
									2	29.0	7.8	24.1	6.9	102.1	5.6	3.6	0.9	6.9	4.4
				1			Bottom	2.7	1 2	29.0 29.0	7.8 7.8	24.2	6.8 6.8	101.5 101.5	8.2 8.2	5.3 4.3	6.8		
									2	29.0	7.8	24.2	0.0	101.5				1	
		TCE-WOM4	Cloudy	Calm	18:47	3.0	Surface	10	1	29.1	78		7.0	103.5	84	72			
		TCE-WQM4	Cloudy	Calm	18:47	3.0	Surface	1.0	1 2	29.1 29.1	7.8 7.8	24.2 24.2	7.0	103.5 103.5	8.4 8.4	7.2 7.5	7.0	87	07
		TCE-WQM4	Cloudy	Calm	18:47	3.0	Surface Bottom	1.0 2.0				24.2					7.0	8.6	9.7

Image Image <t< th=""><th>Turbidity (NTU) 5.6 5.8 9.4 7.8 7.1</th><th>SS (mg/L) 8.7 6.1 10.4 6.0</th></t<>	Turbidity (NTU) 5.6 5.8 9.4 7.8 7.1	SS (mg/L) 8.7 6.1 10.4 6.0
New part of the pa	5.6 5.8 9.4 7.8	6.1
	5.8 9.4 7.8	6.1
Image: book of the start is a start is start is a start is start if the start is start is start is start if the start is start if the start is start if the start is sta	5.8 9.4 7.8	6.1
<th< th=""> <th<< td=""><td>5.8 9.4 7.8</td><td>6.1</td></th<<></th<>	5.8 9.4 7.8	6.1
Norm Norm <t< td=""><td>9.4</td><td>10.4</td></t<>	9.4	10.4
Interpretation Interp	9.4	10.4
<th< <th<<="" td=""><td>9.4</td><td>10.4</td></th<>	9.4	10.4
	9.4	10.4
<th< <th<<="" td=""><td>9.4</td><td>10.4</td></th<>	9.4	10.4
	7.8	
	7.8	
	7.8	
<tr< td=""><td>7.8</td><td></td></tr<>	7.8	
</td <td>7.8</td> <td></td>	7.8	
		6.0
11111113311		6.0
ICH Norm Fire Norm Strip Strip IC Norm Strip Strip </td <td></td> <td>6.0</td>		6.0
Image: problem interpretation inte		6.0
Image: here is a star is a st		6.0
Image: Rest in the star interpretation of the star interpr		
Image: book of the state of the s	71	
Intervalue Intervalue Fire Moderate 1354 110 110 110 100 8.0 228 5.4 98.8 3.6 10.7 100 Num Num Num Num Num Num 100 <td>71</td> <td></td>	71	
<td>7.1</td> <td></td>	7.1	
Image: prime prima prima prima prima prima prima prima prima	7 1	
Image: Rest in the section of the		14.0
Image: problem independence in the section of the	/.1	14.0
Indefinition of the state in the state i		
Index <th< td=""><td></td><td></td></th<>		
$ \left \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	4.9	7.3
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
Incom Incom <th< td=""><td>5.9</td><td>8.8</td></th<>	5.9	8.8
$ \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	5.5	0.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.3	7.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7.3	5.8
TCE-WQM1 Cloudy Calm 8:22 95 Surface 1.0 1 29.7 8.0 23.5 5.1 76.6 4.0 94.4 TCE-WQM1 Cloudy Calm 8:22 95 Surface 1.0 1 29.7 8.0 23.5 5.1 76.6 4.0 94.4 Middle 4.8 1 29.7 8.0 23.5 5.1 76.6 4.0 94.6 Middle 4.8 1 29.8 8.0 23.6 5.1 75.7 6.3 9.8 Battorn 8.5 1 20.8 8.0 23.6 5.0 75.7 6.3 10.8	+	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Middle 4.8 1 29.8 8.0 23.6 5.1 75.7 6.3 9.8 1 2 29.8 8.0 23.6 50.7 75.7 6.3 10.6 1 2 29.8 8.0 23.6 50.0 75.7 6.3 10.6		
Bottom 85 1 208 80 238 40 741 105 96	6.9	9.9
	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
TCE-WQM2a Cloudy Moderate 7:46 7.1 Surface 1.0 1 29.6 8.0 23.8 4.48 72.1 4.5 5.4	+	
2 29,6 8,0 23,8 4,8 72,1 4,5 6,3		
Middle 3.6 1 29.5 8.0 24.5 4.6 69.4 7.7 4.8	7.5	5.2
<u>2</u> 29.5 8.0 24.5 4.6 69.3 7.7 4.4		3.2
Bottom 6.1 1 29.3 8.0 25.2 4.5 67.3 10.1 5.2 2 29.3 8.0 25.3 4.5 67.4 10.2 5.0		
TCE-WQM2b Cloudy Moderate 7.32 10.7 Surface 1.0 1 29.4 8.0 25.3 4.5 67.4 10.2 5.0 4.5		
2 204 80 244 47 607 80 136		
Middle 5.4 1 29.4 8.0 24.7 4.6 68.4 11.0 15.1	10.0	
2 29.4 8.0 24.7 4.6 68.4 11.1 15.0	10.9	14.1
Bottom 9.7 1 29.4 8.0 24.8 4.6 68.4 13.7 13.0 4.6	1	
2 29.4 8.0 24.8 4.6 68.4 13.8 13.2		1
TCE-WQM3A Cloudy Calm 7:58 4.2 Surface 1.0 1 29.5 8.0 23.5 4.9 72.7 5.9 9.5 4.9 - - 2 29.5 8.0 23.5 4.9 72.7 5.9 9.5	1	
2 29.5 8.0 23.5 4.9 72.7 5.9 8.5 Boltom 2.7 1 20.5 8.0 23.6 4.9 71.8 6.4 6.3	+	7.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.2	
	7.2	
2 29.6 8.0 23.5 5.1 76.1 5.8 10.2 5.1	7.2	1
Bottom 2.4 1 29.6 8.0 23.5 5.1 75.8 9.4 11.7 5.1		10.5
2 29.6 8.0 23.5 5.1 75.8 9.3 10.1 ^{3.4}	7.2	10.5

			Weather			Water Depth		Sampling depth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	
Date	Tide	Station	Condition	Sea Condition	Sampling Time	(m)	Water Level	(m)	Replicate	Temperature	pH	(ppt)	Oxygen (DO)	(%)	(NTU)	(SS)	DO	Turbidity	ss
18-09-2019	Mid-Ebb	TCE-C1	Cloudy	Rough	13:30	7.7	Surface	1.0	1	(°C) 29.6	7.8	22.2	(mg/L) 4.8	70.5	2.3	(mg/L) 12.6	(mg/L)	(NTU)	(mg/L)
10 03 2013	ind Loo	ich ci	cloudy	nough	10.00		Surface	1.0	2	29.6	7.8	22.2	4.8	70.5	2.3	11.1			
							Middle	3.9	1	28.7	7.9	27.3	4.2	63.5	5.3	13.7	4.5		13.7
									2	28.7	7.9	27.3	4.2	63.5	5.3	12.8		4.6	13.7
							Bottom	6.7	1	28.7	7.9	28.3	4.3	64.5	6.0	16.6	4.3		
		TCE-C2	Cloudy	Bauah	15:16	14.8	Currla aa	1.0	2	28.7 30.4	7.9 7.8	28.3 23.6	4.3 5.1	64.7 77.2	6.1 2.0	15.6 8.5			
		ICE-C2	Cloudy	Rough	15:16	14.8	Surface	1.0	2	30.4	7.8	23.6	5.1	77.0	2.0	9.5			
							Middle	7.4	1	29.7	7.7	24.2	4.8	72.7	3.7	9.4	5.0		
									2	29.7	7.7	24.2	4.8	72.5	3.7	8.5		2.7	8.9
							Bottom	13.8	1	29.5	7.7	25.2	5.1	77.6	2.3	8.6	5.2	1	
									2	29.6	7.7	25.2	5.2	77.9	2.4	8.9	3.2		
		TCE-WQM1	Cloudy	Moderate	14:11	9.8	Surface	1.0	1	29.8	7.8	22.7	5.0	74.1	7.6	6.8			
									2	29.8	7.8	22.7	5.0	74.1	7.7	6.8	5.0		
							Middle	4.9	1 2	29.7 29.7	7.8 7.8	22.7 22.7	5.1	75.8 75.8	8.1 8.0	9.3 8.4		7.7	8.6
							Bottom	8.8	1	29.7	7.8	22.6	5.3	75.8	7.4	9.5		-	
							Dottom	0.0	2	29.8	7.9	22.6	5.3	78.4	7.4	10.5	5.3		
		TCE-WQM2a	Cloudy	Rough	14:43	8.5	Surface	1.0	1	29.9	7.8	23.8	4.8	71.8	7.5	8.0			
			-	-					2	29.9	7.8	23.8	4.8	71.8	7.5	8.5	4.7		
							Middle	4.3	1	29.2	7.8	25.0	4.7	70.7	5.7	8.4	4.7	6.6	7.9
									2	29.2	7.8	25.0	4.7	70.8	5.7	8.9		0.0	7.5
							Bottom	7.5	2	29.2 29.2	7.8 7.8	25.8 25.8	5.0 5.0	75.2 75.6	6.4	6.2	5.0		
		TCE-WQM2b	Cloudy	Rough	14:55	10.3	Surface	1.0	1	30.0	7.8	25.8	5.0	75.6	6.6	7.1 11.9			
		TCL-WQM20	cioudy	Rough	14.55	10.5	Surface	1.0	2	30.0	7.8	22.4	5.2	77.0	1.3	12.0			
							Middle	5.2	1	29.7	7.8	23.4	5.1	75.7	1.8	13.7	5.1		
									2	29.7	7.8	23.4	5.1	75.8	1.8	15.3		1.7	14.7
							Bottom	9.3	1	29.7	7.8	23.6	5.4	80.8	1.9	18.6	5.4		
									2	29.7	7.8	23.6	5.4	81.0	1.9	16.8	5.4		
		TCE-WQM3A	Cloudy	Moderate	14:32	4.1	Surface	1.0	1	29.9	7.7	22.9	5.0	75.3	5.8	9.7	5.0		
							D		2	29.9	7.7	22.9	5.0	75.5	5.9	10.3		6.5	9.2
							Bottom	3.1	2	29.7 29.7	7.7 7.7	23.1 23.1	5.5	82.0 82.6	7.2 7.2	8.2	5.5		
		TCE-WQM4	Cloudy	Moderate	14:22	3.6	Surface	1.0	1	29.8	7.7	22.7	5.0	74.3	4.2	11.7			
		ice ingini	cloudy	modelate		5.0	Surface	1.0	2	29.8	7.7	22.7	5.0	74.3	4.3	10.6	5.0		
							Bottom	2.6	1	29.8	7.7	23.0	5.2	77.5	2.7	9.6		3.5	10.2
									2	29.8	7.7	23.0	5.2	77.8	2.7	8.7	5.2		
18-09-2019	Mid-Flood	TCE-C1	Cloudy	Rough	10:01	7.9	Surface	1.0	1	29.5	7.8	21.6	4.7	69.9	3.4	3.7			
									2	29.5	7.8	21.6	4.7	69.9	3.5	4.6	4.5		
							Middle	4.0	1	28.9	7.9 7.9	27.5	4.2	63.8	4.4	4.3		6.1	7.4
							Bottom	6.9	2	28.9 28.9	7.9	27.5	4.2	63.8	4.4 10.5	4.2 12.7		_	
							Dottoin	0.9	2	28.9	7.9	27.7	4.4	67.0	10.5	14.6	4.4		
		TCE-C2	Cloudy	Moderate	8:04	15.6	Surface	1.0	1	29.4	7.7	23.8	4.6	68.7	3.5	11.0			
			5						2	29.4	7.7	23.8	4.6	68.6	3.5	10.1			
							Middle	7.8	1	29.1	7.7	25.9	4.3	65.3	4.2	11.0	4.5	5.1	11.1
									2	29.1	7.7	25.9	4.3	65.2	4.3	12.2		5.1	11.1
							Bottom	14.6	1	29.1	7.7	25.9	4.4	65.7	7.5	10.8	4.4		
		TCE-WQM1	Cloudy	Moderate	9:13	10.2	Surface	1.0	2	29.1 29.5	7.7 7.8	25.9 22.5	4.4 5.0	65.9 73.7	7.5 2.6	9.0			
		ICE-WQMI	Cioudy	woderate	9:13	10.2	Surface	1.0	2	29.5	7.8	22.5	5.0	73.7	2.6	9.0			
				1			Middle	5.1	1	29.6	7.8	22.7	4.9	72.9	4.0	4.2	4.9	1 .	
				1					2	29.6	7.8	22.7	4.9	72.9	4.1	4.1		4.9	5.8
				1			Bottom	9.2	1	29.5	7.8	23.5	5.3	79.2	7.9	4.9	5.3	1	
		L		1					2	29.5	7.8	23.5	5.3	79.5	7.9	4.0	د.د		
		TCE-WQM2a	Cloudy	Moderate	8:40	7.5	Surface	1.0	1	29.5 29.5	7.7 7.7	23.7 23.7	4.7	70.1 70.1	5.1	8.0			
				1			Middle	3.8	2	29.5 29.4	7.7	23.7 23.8	4.7	70.1 69.8	5.1 6.3	7.1 5.0	4.7		
				1			Middle	5.8	2	29.4	7.7	23.8	4.7	69.8 70.0	6.3	6.0		6.9	6.1
				1			Bottom	6.5	1	29.4	7.7	23.9	4.7	72.3	9.4	4.7		1	
				1					2	29.4	7.7	23.9	4.9	72.6	9.5	5.5	4.9		
		TCE-WQM2b	Cloudy	Moderate	8:26	11.8	Surface	1.0	1	29.5	7.7	23.9	4.7	70.5	5.9	11.0			
				1					2	29.5	7.7	23.9	4.7	70.6	5.9	12.2	4.7		
				1			Middle	5.9	1	29.4	7.7	24.0	4.7	70.2	7.0	11.6		6.9	11.3
				1			n	10.0	2	29.4	7.7	24.0	4.7	70.3	7.1	10.7		+	
				1			Bottom	10.8	2	29.4 29.4	7.7 7.7	24.3 24.2	5.0	74.7 74.8	7.7 7.6	10.6 11.6	5.0		
		TCE-WQM3A	Cloudy	Moderate	8:51	4.6	Surface	1.0	1	29.4	7.7	24.2 22.9	5.0	74.8	5.6	11.6		+	
		ice inquisit	cioucy	moderate	0.51	0	Surface	1.0	2	29.5	7.7	22.9	5.1	75.6	5.7	10.6	5.1	1 .	
				1			Bottom	3.6	1	29.5	7.7	23.1	5.8	85.6	9.1	10.2	5.0	7.4	10.6
									2	29.5	7.7	23.1	5.8	86.3	9.3	9.8	5.8		
		TCE-WQM4	Cloudy	Moderate	9:02	3.8	Surface	1.0	1	29.5	7.8	23.3	5.0	74.8	3.3	19.9	5.0		
				1					2	29.5	7.8	23.3	5.0	74.7	3.2	22.8		5.9	18.2
1		1		1			Bottom	2.8	2	29.4 29.4	7.7 7.7	23.2 23.2	5.7 5.7	85.0 85.4	8.4 8.5	14.6 15.5	5.7		

Image: Note of the sector of the s				Weather			Water Depth		Sampling depth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	
Norm Norm </th <th>Date</th> <th>Tide</th> <th>Station</th> <th></th> <th>Sea Condition</th> <th>Sampling Time</th> <th></th> <th>Water Level</th> <th>(m)</th> <th>Replicate</th> <th>Temperature</th> <th>pH</th> <th></th> <th>Oxygen (DO)</th> <th></th> <th></th> <th>(SS)</th> <th>DO</th> <th>Turbidity</th> <th>ss</th>	Date	Tide	Station		Sea Condition	Sampling Time		Water Level	(m)	Replicate	Temperature	pH		Oxygen (DO)			(SS)	DO	Turbidity	ss
	20-09-2019	Mid-Fbb	TCE-C1	Suppy	Rough	14:45	7.4	Surface	1.0	1	29.6	77						(mg/L)	(NIU)	(mg/L)
<td>20-09-2019</td> <td>Mid-Lbb</td> <td>ici-ci</td> <td>Sunny</td> <td>Rough</td> <td>14.45</td> <td>7.4</td> <td>Surface</td> <td>1.0</td> <td></td>	20-09-2019	Mid-Lbb	ici-ci	Sunny	Rough	14.45	7.4	Surface	1.0											
<th< th=""> <th<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Middle</td><td>3.7</td><td>1</td><td>29.3</td><td>7.7</td><td>28.2</td><td>5.6</td><td>84.8</td><td>4.2</td><td>9.8</td><td>5.7</td><td>2.0</td><td>10.7</td></th<<></th<>								Middle	3.7	1	29.3	7.7	28.2	5.6	84.8	4.2	9.8	5.7	2.0	10.7
<th< th=""></th<>																			3.9	10.7
Index Image								Bottom	6.4									5.9		
			TCE C2	Gummu	Bauah	16.57	12.2	European	1.0											
<th< th=""> <th<< td=""><td></td><td></td><td>ICE-C2</td><td>Sunny</td><td>Kougn</td><td>16:57</td><td>12.2</td><td>Surrace</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<></th<>			ICE-C2	Sunny	Kougn	16:57	12.2	Surrace	1.0											
								Middle	6.1			7.8	25.9				10.3	5.1		
<th<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.6</td><td>10.3</td></th<<>																			4.6	10.3
Number Image <								Bottom	11.2			7.8	27.0	5.1	76.8	6.4	12.7	F 1	1	
<th< th=""> <th< th=""></th<></th<>																		5.1		
<th< th=""></th<>			TCE-WQM1	Sunny	Moderate	15:43	7.9	Surface	1.0											
<th< th=""> <th<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.7</td><td></td><td></td></th<<></th<>									10									5.7		
<th< th=""> <th<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Middle</td><td>4.0</td><td>-</td><td></td><td></td><td></td><td>5.7</td><td></td><td></td><td></td><td></td><td>4.3</td><td>20.8</td></th<<></th<>								Middle	4.0	-				5.7					4.3	20.8
Normal and participant set of the set of t								Bottom	6.9										4	
Norm												7.8						5.9		
			TCE-WQM2a	Sunny	Moderate	16:18	7.8	Surface	1.0											
																		5.0		
Norm Norm <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Middle</td><td>3.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.0</td><td>9.9</td></t<>								Middle	3.9										4.0	9.9
Norm Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Dettere</td><td>6.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td></th<>								Dettere	6.0										4	
Norm Field								Dottom	0.0			7.8						5.5		
			TCE-WOM2b	Sunny	Rough	16:30	11.0	Surface	1.0											
																			1	
Normal and participant set in the second								Middle	5.5			7.8	25.3	5.1				5.2	6.0	7.7
Image: serie serie series in the s																			6.0	1.1
								Bottom	10.0									5.2		
			TCE WOMA	C	Cular	16.00	10	Contras.	1.0					5.3	79.7		7.1			
<th< <th<<="" td=""><td></td><td></td><td>ICE-WQM3A</td><td>Sunny</td><td>Calm</td><td>16:06</td><td>4.0</td><td>Surface</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.8</td><td></td><td></td></th<>			ICE-WQM3A	Sunny	Calm	16:06	4.0	Surface	1.0									5.8		
Normal Image <								Bottom	3.0										3.5	9.8
								Dottom	0.0			7.8		5.7				5.7		
Image: regrImage: r			TCE-WQM4	Sunny	Calm	15:55	3.5	Surface	1.0	1	30.0	7.8		5.9	89.7			5.0		
Image: Prime price price Image: Prime price price Image: Prime price price Image: Prime price pric																		5.9	4.5	13.7
1000000000000000000000000000000000000								Bottom	2.5									6.0	4.5	13.7
Image: prime prima prima prima prime prima prima prima prima prima prima prima								- 1												
Image Image <t< td=""><td>20-09-2019</td><td>Mid-Flood</td><td>TCE-CI</td><td>Fine</td><td>Rough</td><td>12:15</td><td>7.3</td><td>Surface</td><td>1.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	20-09-2019	Mid-Flood	TCE-CI	Fine	Rough	12:15	7.3	Surface	1.0											
Image: brance branche								Middle	3.7	1								5.4		
Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Milduic</td><td>0.1</td><td>2</td><td></td><td>7.8</td><td>27.6</td><td>5.1</td><td>76.9</td><td></td><td></td><td></td><td>8.7</td><td>15.5</td></t<>								Milduic	0.1	2		7.8	27.6	5.1	76.9				8.7	15.5
TCE-Q Fire Moderate 93 State 10 2 23 74 542 52 75 114 114 114 TCE-Q Prine Moderate 93 State 10 12 20 75 250 33 75 11 139 11 139 Moderate 64 64 1 937 75 250 48 72.8 11.1 139 11 139								Bottom	6.3	1						14.1		5.2	1	
Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.2</td><td></td><td></td></t<>										2								5.2		
Image: problem index ind			TCE-C2	Fine	Moderate	9:35	12.7	Surface	1.0											
Normal and present in the state i												7.9	25.2	5.1			12.8	5.0		
Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Middle</td><td>6.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.4</td><td>13.6</td></t<>								Middle	6.4										1.4	13.6
Image: bolic								Bottom	11.7			7.8	28.0						+	
TCE-WQMI Fine Calm 1054 Solution Solutio													27.1					4.8		
Image: problem index ind			TCE-WQM1	Fine	Calm	10:54	8.5	Surface	1.0	1	29.8	7.7	24.3	4.9	74.1	5.8	8.6			
$ \left[$					1													4.8	1	
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $					1			Middle	4.3	-								4.0	7.9	10.8
Image: bolic biase Image:					1			Rottom	75										4	
TCE-WQM2a Fine Moderate 10:16 73 Surface 1.0 1 29.6 7.8 24.9 4.8 7.22 3.7 8.4 7.4 7.4 8.4 7.2 3.7 8.4 7.4 7.4 8.4 7.2 3.7 7.3 8.4 7.4 7.3 8.4 7.2 3.7 7.3 8.4 7.2 3.7 7.3 8.4 7.2 3.7 7.3 <th7.3< th=""> 7.3 7.3</th7.3<>					1			Dottom	1.5									4.8	1	
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $			TCE-WOM2a	Fine	Moderate	10:16	7.3	Surface	1.0										1	
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $							~			-									1	
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $					1			Middle	3.7									4./	5.3	8.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1							7.8							3.5	0.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1			Bottom	6.3									4.6	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			TCE WOLD	E2	Madainte	10.02	11.0	Suction	1.0										1	
$ \left[\begin{array}{c c c c c c c c c c c c c c c c c c c $			TCE-WQWI2b	Fine	Moderate	10:05	11.5	Surrace	1.0										1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1			Middle	5.7			7.8	25.4		75.7	3.1	8.3	5.2	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1								25.4						3.2	8.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1			Bottom	10.3	-								5.2	T	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			L		1													2.4	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			TCE-WQM3A	Fine	Calm	10:29	3.8	Surface	1.0				24.9		72.9			4.8	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1			Patter	20										2.9	8.4
TCE-WQM4 Fine Calm 10:43 3.6 Surface 1.0 1 29.5 7.8 24.7 4.9 73.4 7.9 12.1 4.9 Image: Comparison of the structure 10:43 3.6 Surface 1.0 1 29.5 7.8 24.7 4.9 73.4 7.9 12.1 4.9 Bettom 2.6 1.0 1 29.5 7.8 24.7 4.9 73.5 7.8 11.1 4.9 9.1 Bettom 2.6 1 29.5 7.7 24.7 5.1 7.61 10.2 14.6 9.1					1			Dottom	2.8									4.8	1	
2 29.5 7.8 24.7 4.9 73.5 7.8 11.1 4.9 Rottom 2.6 1 32.5 7.7 24.7 5.1 7.6 10.2 1.1.6 9.1			TCE-WOM4	Fine	Calm	10.43	3.6	Surface	1.0											
Bottom 2.6 1 205 7.7 24.7 5.1 7.61 10.2 14.6 9.1										2								4.9	0.1	12.9
					1			Bottom	2.6	1	29.5	7.7	24.7	5.1	76.1	10.2	14.6	51	9.1	12.9
2 29.5 7.7 24.7 5.1 76.3 10.3 13.8 5.1										2	29.5	7.7	24.7	5.1	76.3	10.3	13.8	5.1		

			147			Watan Daath		Complian Joseth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	
Date	Tide	Station	Weather Condition	Sea Condition	Sampling Time	Water Depth (m)	Water Level	Sampling depth (m)	Replicate	Temperature	pH	(ppt)	Oxygen (DO)	(%)	(NTU)	(SS)	DO	Turbidity	SS
23-09-2019	Mid-Ebb	TCE-C1	Fine	Moderate	7:43	7.4	Surface	1.0	1	(°C) 27.8	8.2	30.1	(mg/L)	93.8	4.9	(mg/L) 6.7	(mg/L)	(NTU)	(mg/L)
23-09-2019	MIG-EDD	ICE-CI	Fine	Moderate	7:43	7.4	Surface	1.0	2	27.8	8.2	30.1	6.2	93.8	4.9	7.0			
							Middle	3.7	1	27.9	8.0	32.0	6.1	93.8	4.9	7.5	6.2		
							windule	5.7	2	28.8	8.0	32.0	6.1	94.5	6.5	7.7		8.3	7.9
							Bottom	6.4	1	28.8	8.1	32.0	6.1	93.9	13.4	8.9		-	
									2	28.8	8.1	32.0	6.1	94.0	13.4	9.4	6.1		
		TCE-C2	Fine	Moderate	5:46	14.2	Surface	1.0	1	27.9	8.0	28.2	7.2	107.8	1.6	4.0			
									2	27.9	8.0	28.2	7.2	107.8	1.6	4.3	6.8		
							Middle	7.1	1	28.7	8.0	29.2	6.4	96.6	2.2	4.4	0.8	2.6	4.4
									2	28.7	8.0	29.1	6.4	96.7	2.2	4.2		2.0	4.4
							Bottom	13.2	1	29.2	7.9	31.7	5.1	79.4	4.0	4.6	5.1		
									2	29.2	7.9	31.7	5.1	79.8	4.1	4.7			
		TCE-WQM1	Fine	Moderate	7:02	9.5	Surface	1.0	1	27.9	8.1	28.4	6.2	93.1	5.2	6.7			
									2	27.9	8.1	28.4	6.2	93.0	5.1	6.6	6.1		
							Middle	4.8	1	28.3	8.0	29.4	5.9 5.9	89.5 89.6	8.2	8.1		8.0	8.5
							Bottom	8.5	2	28.4 28.6	8.0 8.1	29.5 30.2	5.9	89.6	8.2 10.8	8.4 10.8		_	
							Bottom	8.5	2	28.6			5.7				5.7		
		TCE-WQM2a	Fine	Moderate	6:27	8.2	Surface	1.0	1	28.6	8.1 8.2	30.2 28.3	5.9	86.3 89.0	10.8 4.3	10.5 6.9			
		TCL-WQWIZa	The	wioderate	0.27	0.2	Surface	1.0	2	28.4	8.2	28.3	5.9	89.0	4.3	7.1			
							Middle	4.1	1	28.8	8.0	20.3	5.2	79.4	4.5	7.3	5.6		
				1			madule	***	2	28.8	8.0	29.4	5.2	79.4	3.8	7.2		4.1	7.5
				1			Bottom	7.2	1	29.0	7.9	30.1	5.1	78.0	4.3	8.1		1	
				1					2	29.0	7.9	30.3	5.1	77.8	4.4	8.2	5.1		
		TCE-WQM2b	Fine	Moderate	6:15	10.5	Surface	1.0	1	28.0	7.9	28.6	6.1	91.4	2.5	5.2			
									2	28.0	7.9	28.6	6.1	90.9	2.5	5.4			
							Middle	5.3	1	28.6	8.0	29.3	5.8	88.4	2.5	5.3	6.0		
									2	28.6	8.0	29.3	5.8	88.3	2.4	5.0		2.8	5.4
							Bottom	9.5	1	28.7	8.0	29.6	5.7	86.8	3.3	5.5	5.7	1	
									2	28.7	8.0	29.6	5.7	87.0	3.4	5.7	5.7		
		TCE-WQM3A	Fine	Moderate	6:39	4.2	Surface	1.0	1	28.8	7.9	28.5	5.0	75.2	3.6	7.3	5.0		
									2	28.8	7.9	28.5	5.0	75.1	3.6	7.1	5.0	4.6	7.5
							Bottom	3.2	1	28.9	7.9	29.3	5.0	76.0	5.6	7.6	5.0		
									2	28.9	7.9	29.2	5.0	76.1	5.5	7.9			
		TCE-WQM4	Fine	Moderate	6:50	3.9	Surface	1.0	1	28.2	8.1	27.3	6.2	92.1	5.5	8.6	6.2		
							-		2	28.2	8.1	27.3	6.2	92.1	5.6	8.9		7.8	8.8
							Bottom	2.9	1	28.5	8.1	28.2	5.8	87.8	10.1	8.6	5.8		
23-09-2019	Mid-Flood	TCE-C1			10.00	7.8		10	2	28.5 28.9	8.2	28.2 31.0	5.9 7.6	88.2 116.7	10.2 3.7	9.0			
23-09-2019	Mid-Flood	ICE-CI	Fine	Rough	18:20	7.8	Surface	1.0	2	28.9	8.1 8.1	31.0	7.6	116.7	3.7	6.7			
							Middle	3.9	1	28.9	8.2	32.1	6.6	102.4	7.4	7.6	7.1		
							windule	3.9	2	29.0	8.2	32.1	6.6	102.4	7.4	7.9		9.2	7.6
							Bottom	6.8	1	28.9	8.2	32.4	6.3	98.0	16.3	8.3		-	
								010	2	28.9	8.2	32.4	6.3	98.1	16.3	8.1	6.3		
		TCE-C2	Fine	Rough	20:12	15.2	Surface	1.0	1	29.0	8.0	31.5	5.4	83.5	3.2	7.0			
			-						2	29.0	8.0	31.5	5.4	83.5	3.1	7.4			
							Middle	7.6	1	29.0	7.9	31.7	5.4	83.7	3.9	7.2	5.4	3.8	7.3
									2	29.0	7.9	31.7	5.4	83.8	4.0	7.4		3.8	7.3
							Bottom	14.2	1	29.0	7.9	31.7	5.4	84.3	4.3	7.2	5.4		
									2	29.0	7.9	31.7	5.5	84.4	4.3	7.3	3.4		
		TCE-WQM1	Fine	Moderate	19:01	10.1	Surface	1.0	1	28.8	8.3	28.1	8.4	126.5	6.9	7.9			
				1					2	28.8	8.3	28.1	8.4	126.3	6.9	7.6	8.2		
				1			Middle	5.1	1	28.7	8.3	28.2	8.1	122.4	7.3	8.1		8.1	7.9
				1			D - 11	0.1	2	28.7	8.3 8.3	28.2 28.6	8.1	122.2 103.2	7.3	7.9 8.0		4	
				1			Bottom	9.1	1	28.6	8.3	28.6	6.8	103.2	10.2	8.0	6.8		
		TCE WOM2	Fine	Moderate	19:35	0.2	Eurofana	1.0	2	28.6								-	l
		TCE-WQM2a	Fine	wouerate	19.35	8.2	Surface	1.0	2	28.7 28.7	8.1	29.4 29.4	7.0	106.4 106.4	3.6	5.7 6.0			
				1			Middle	4.1	1	28.8	8.0	30.5	5.4	82.9	4.3	6.2	6.2		
				1			middie	***	2	28.8	8.0	30.5	5.4	82.8	4.3	6.4		5.0	6.1
				1			Bottom	7.2	1	28.8	8.0	30.7	5.3	81.8	7.1	6.1		1	
				1					2	28.8	8.0	30.7	5.3	81.9	7.2	6.4	5.3		
		TCE-WQM2b	Fine	Rough	19:46	11.4	Surface	1.0	1	28.7	8.2	29.7	6.9	104.7	3.1	7.1			1
				Ŭ					2	28.7	8.2	29.7	6.9	104.5	3.1	7.2	6.7		
				1			Middle	5.7	1	28.8	8.1	30.3	5.8	89.6	5.4	7.1	6.3	5.0	7.4
				1					2	28.8	8.1	30.3	5.8	89.5	5.4	6.8		5.0	7.4
				1			Bottom	10.4	1	28.9	8.1	31.2	5.4	83.3	6.4	8.0	5.4		
				1					2	28.9	8.1	31.2	5.4	83.5	6.4	8.3	J.4		
1		TCE-WQM3A	Fine	Moderate	19:24	4.1	Surface	1.0	1	28.8	8.1	28.9	6.2	93.6	9.4	8.8	6.2		
				1											9.4	9.0	0.2	9.9	8.8
							Dattan	2.1	1	28.7	8.1	29.2	5.8	87.9	10.5	8.6			
							Bottom 3.1 1 28.7 8.1 29.2 5.8 87.9 10.5 8.6 0 0 28.7 8.1 29.2 5.8 87.9 10.5 8.6 5.8												
			i						2	28.7	8.1	29.2	5.8	88.1	10.5	8.6	5.8		
		TCE-WQM4	Fine	Moderate	19:13	3.6	Surface	1.0	2	28.9	8.1 8.2	29.2 28.6	5.8 8.3	88.1 125.8	10.5 5.4	8.6 6.8	5.8		
		TCE-WQM4	Fine	Moderate	19:13	3.6	Surface	1.0	2 1 2	28.9 28.9	8.1 8.2 8.2	29.2 28.6 28.6	5.8 8.3 8.3	88.1 125.8 125.7	10.5 5.4 5.4	8.6 6.8 6.5		5.9	7.4
		TCE-WQM4	Fine	Moderate	19:13	3.6			2	28.9	8.1 8.2	29.2 28.6	5.8 8.3	88.1 125.8	10.5 5.4	8.6 6.8		5.9	7.4

			Weather			Water Depth		Sampling depth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged		
Date	Tide	Station	Condition	Sea Condition	Sampling Time	(m)	Water Level	(m)	Replicate	Temperature	pH	(ppt)	Oxygen (DO)	(%)	(NTU)	(SS)	DO	Turbidity	SS	
25-09-2019	Mid-Ebb	TCE-C1	Cloudy	Moderate	11:10	8.2	Surface	1.0	1	(°C) 28.9	7.9	29.5	(mg/L) 7.1	108.7	3.0	(mg/L) 8.1	(mg/L)	(NTU)	(mg/L)	
20 07 2017	ind Loo	ich ci	cloudy	modeluie	11.10	0.2	Surface	1.0	2	28.9	7.9	29.5	7.1	108.4	3.2	8.4				
							Middle	4.1	1	28.9	7.9	29.7	6.7	101.7	8.8	10.4	6.9		9.7	
									2	28.8	7.9	29.7	6.6	101.4	8.9	10.3		10.4	9.7	
							Bottom	7.2	1	28.7	7.8	29.9	6.4	98.4	19.5	10.4	6.4			
		TCE-C2	Cloudy	Moderate	9:00	12.8	Eurofana	1.0	2	28.7 28.5	7.8 7.9	29.9 29.1	6.5	98.5 91.0	19.2 1.4	10.6				
		ICE-C2	Cloudy	Moderate	9:00	12.8	Surface	1.0	2	28.5	7.9	29.1 29.1	6.0	90.9	1.4	7.1				
							Middle	6.4	1	28.7	7.9	29.4	5.5	83.2	4.9	8.3	5.7			
									2	28.7	7.9	29.4	5.5	83.2	5.0	8.2		4.8	8.1	
							Bottom	11.8	1	29.0	7.9	30.2	5.4	82.4	8.2	9.1	5.4	1		
									2	29.0	8.0	30.2	5.4	82.6	7.9	9.2	3.4			
		TCE-WQM1	Cloudy	Calm	10:18	8.5	Surface	1.0	1	28.8	8.0	28.8	6.8	102.7	2.7	7.6				
									2	28.8	8.0	28.8	6.7	102.3	2.8	7.8	6.7			
							Middle	4.3	2	28.8 28.8	8.0	28.9 28.9	6.6	100.9 100.5	3.1 3.4	10.1 9.8		3.5	10.1	
							Bottom	7.5	1	28.8	8.0	28.9	6.6	99.9	4.6	9.8		-		
							Dottom	1.5	2	28.8	8.0	29.6	6.6	100.1	4.5	12.9	6.6			
		TCE-WQM2a	Cloudy	Moderate	9:42	7.7	Surface	1.0	1	28.9	7.9	28.4	6.2	94.4	4.6	11.9				
			-						2	28.9	7.9	28.4	6.2	94.4	4.6	12.2	5.9			
							Middle	3.9	1	28.8	7.9	29.0	5.6	85.7	4.2	11.3	5.9	4.0	12.0	
									2	28.8	7.9	29.0	5.6	85.8	4.2	11.2		4.0	12.0	
							Bottom	6.7	1	28.9	7.9	29.5	5.8	88.4	3.0	12.6	5.8			
		TCE-WQM2b	Cloudy	Moderate	9:30	11.2	Surface	1.0	2	28.9 28.9	7.9 7.9	29.5 28.6	5.8 6.6	88.6 99.7	3.1	12.8 8.1				
		TCE-WQM2D	Cloudy	Moderate	9:50	11.2	Surface	1.0	2	28.9	7.9	28.6	6.6	99.4	1.6	7.7				
							Middle	5.6	1	28.9	7.9	29.0	5.9	99.4 89.6	6.0	9.8	6.2			
									2	28.9	7.9	29.0	5.9	89.6	6.1	10.1		5.0	9.2	
							Bottom	10.2	1	28.9	7.9	29.1	6.0	91.5	7.2	9.5	6.0	1		
									2	28.9	7.9	29.1	6.0	91.5	7.2	9.7	6.0			
		TCE-WQM3A	Cloudy	Calm	9:54	4.4	Surface	1.0	1	28.8	7.9	28.6	5.6	84.7	5.4	12.4	5.6			
									2	28.8	7.9	28.6	5.6	84.9	5.4	12.5		5.2 14	14.1	
							Bottom	3.4	2	28.8	7.9	28.9	5.9	89.7	5.0	15.5	5.9			
		TCE-WQM4	Cloudy	Calm	10:08	3.4	Surface	1.0	2	28.8 28.8	7.9 8.0	28.9 28.2	5.9 6.5	90.0 99.1	5.1 9.4	15.8		t		
		TCE-WQIVI4	Cloudy	Cann	10.08	3.4	Surface	1.0	2	28.8	8.0	28.2	6.6	99.3	9.4	11.0	6.5			
							Bottom	2.4	1	28.8	8.0	28.3	6.5	98.5	14.8	12.0		12.1	11.5	
									2	28.8	8.0	28.3	6.5	98.4	14.5	11.7	6.5			
25-09-2019	Mid-Flood	TCE-C1	Cloudy	Moderate	15:41	7.6	Surface	1.0	1	29.3	7.9	29.0	7.2	110.3	8.4	19.1				
									2	29.3	7.9	29.0	7.1	108.6	8.5	19.3	6.9			
							Middle	3.8	1	28.8	7.8	29.3	6.6	101.1	14.7	16.9			18.5	
							Bottom	6.6	2	28.8 28.8	7.8 7.8	29.3 29.6	6.6	100.9 98.3	14.9 20.2	16.6 19.4			_	
							Dottom	0.0	2	28.8	7.8	29.6	6.5	98.3	20.2	19.4	6.4			
		TCE-C2	Cloudy	Moderate	17:48	12.2	Surface	1.0	1	28.8	8.4	29.6	5.9	90.2	5.5	19.8				
									2	29.0	8.4	29.6	5.9	89.9	5.8	12.9				
							Middle	6.1	1	29.0	8.4	29.6	5.7	87.7	5.6	12.1	5.8	6.3	12.8	
									2	29.0	8.4	29.6	5.7	87.7	5.6	12.3		6.3	12.8	
							Bottom	11.2	1	29.0	8.4	29.7	5.6	86.4	7.6	13.1	5.6			
									2	29.0	8.4	29.7	5.7	86.6	7.6	13.3				
		TCE-WQM1	Cloudy	Calm	16:28	8.0	Surface	1.0	1 2	29.6 29.6	7.9 7.9	28.5 28.5	7.4 7.4	113.3 113.1	10.7 10.6	19.4 19.2				
							Middle	4.0	1	29.6	7.9	28.5	7.4	109.3	10.6	35.3	7.3			
									2	29.4	7.8	28.5	7.1	109.4	17.9	35.0		16.3	28.1	
							Bottom	7.0	1	29.4	7.8	28.5	7.0	107.9	20.6	29.6	7.0	1		
									2	29.4	7.8	28.5	7.0	107.8	20.3	30.0	7.0			
		TCE-WQM2a	Cloudy	Moderate	17:05	7.2	Surface	1.0	1	29.1	8.0	28.8	7.0	106.6	17.9	24.3				
									2	29.1	8.0	28.8	7.0	106.6	17.9	24.3	7.0			
							Middle	3.6	1	29.1	8.0	28.8	7.0	106.2	13.5	23.1		16.9	27.6	
							Bottom	6.2	2	29.1 29.1	8.0	28.8	7.0	106.3 105.2	13.8	23.4 35.4		+		
							Dottoin	0.2	2	29.1 29.1	8.0	28.8	6.9	105.2	19.2	35.0	6.9			
		TCE-WQM2b	Cloudy	Moderate	17:17	11.1	Surface	1.0	1	29.0	8.0	28.9	6.7	102.8	9.9	19.3		1	1	
									2	29.0	8.0	28.9	6.7	102.7	10.0	19.4	6.7			
							Middle	5.6	1	29.0	8.0	28.9	6.7	101.8	14.3	21.4	o./	14.1	20 5	
									2	29.0	8.0	28.9	6.7	101.9	14.0	21.0		14.1	14.1 20.5	
							Bottom	10.1	1	29.0	8.0	28.9	6.6	101.3	18.1	20.8	6.6			
		TCT WOME :	Charles	Culu	16.54	2.4	Contras.	10	2	29.0	8.0	28.9	6.6	101.3 99.3	18.4	21.0		1	+	
		TCE-WQM3A	Cloudy	Calm	16:54	3.4	Surface	1.0	2	29.2 29.2	7.9 7.9	28.5 28.5	6.5	99.3 99.1	6.7	12.1 11.7	6.5			
							Bottom	2.4	1	29.2	7.9	28.5	6.5	99.1 95.1	6.6 7.8	11.7		7.3	12.8	
1							DOMONI	P	2	29.0	7.9	28.7	6.3	95.3	7.9	13.6	6.2			
								1											<u> </u>	1
		TCE-WQM4	Cloudy	Calm	16:41	3.1	Surface	1.0	1	29.6	7.8	28.6	7.5	116.0	7.7	18.5	7.5	7.5		
		TCE-WQM4	Cloudy	Calm	16:41	3.1	Surface	1.0	2	29.6	7.8	28.6 28.6	7.5	116.0 115.8	7.8	18.5 18.5	7.5	8.4	17.7	
		TCE-WQM4	Cloudy	Calm	16:41	3.1	Surface Bottom	2.1									7.5	8.4	17.7	

			Weather			Water Depth		Sampling depth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	
Date	Tide	Station	Condition	Sea Condition	Sampling Time	(m)	Water Level	(m)	Replicate	Temperature	pH	(ppt)	Oxygen (DO)	(%)	(NTU)	(SS)	DO (mg/I)	Turbidity (NTU)	SS (mg/L)
27-09-2019	Mid-Ebb	TCE-C1	Sunny	Rough	13:14	8.5	Surface	1.0	1	(°C) 29.0	7.8	30.2	(mg/L) 6.5	99.2	8.8	(mg/L) 14.9	(mg/L)	(N10)	(mg/L)
			,						2	29.0	7.9	30.2	6.5	99.0	8.8	15.1	6.4		
							Middle	4.3	1	28.9	7.9	30.3	6.4	98.0	11.6	23.1	0.4	12.7	21.2
									2	28.9	7.9	30.3	6.4	97.9	11.6	23.4			
							Bottom	7.5	1 2	28.9 28.9	7.9 7.9	30.3 30.3	6.4 6.4	98.0 98.0	17.6 17.6	25.4 25.2	6.4		
		TCE-C2	Sunny	Moderate	10:57	14.8	Surface	1.0	1	29.1	7.9	29.7	7.0	106.8	3.4	8.7			
			Sunny	modelate	10.07	140	Surface	1.0	2	29.1	7.9	29.7	7.0	106.8	3.5	8.7			
							Middle	7.4	1	29.0	7.9	29.8	6.5	99.3	6.8	9.5	6.7	7.3	9.5
									2	29.0	7.9	29.8	6.5	99.2	6.8	9.8		7.3	9.5
							Bottom	13.8	1	28.9	7.9	30.8	5.7	87.7	11.8	10.3	5.7		
		TCE-WQM1	Sunny	Moderate	12:25	10.2	Surface	1.0	2	28.9 28.9	7.9 7.7	30.8 29.9	5.7 6.5	87.9 99.0	11.7 8.8	10.0 15.6			
		TCE-WQMI	Sunny	Moderate	12:25	10.2	Surrace	1.0	2	28.9	7.7	29.9	6.5	99.0	8.8	15.8			
							Middle	5.1	1	28.9	7.7	29.9	6.4	98.0	9.3	16.9	6.4		
									2	28.9	7.7	29.9	6.4	98.0	9.3	17.1		9.9	17.2
							Bottom	9.2	1	28.9	7.7	29.9	6.4	98.3	11.6	18.9	6.4		
									2	28.9	7.7	29.9	6.4	98.3	11.6	18.6	0.4		
		TCE-WQM2a	Sunny	Moderate	11:49	7.8	Surface	1.0	1	29.1	7.9 7.9	29.9	6.7	103.4	6.8	14.0			
							Middle	3.9	2	29.1 29.1	7.9	29.9 30.0	6.7	103.4 101.2	6.8 8.8	14.4 15.7	6.7		
							windule	3.5	2	29.1	8.0	30.0	6.6	101.2	8.8	15.6		9.0	16.0
							Bottom	6.8	1	28.9	8.0	30.1	6.3	95.9	11.4	17.9			
									2	28.9	8.0	30.1	6.3	95.8	11.4	18.2	6.3		
		TCE-WQM2b	Sunny	Moderate	11:36	11.6	Surface	1.0	1	28.9	8.2	29.3	6.6	100.6	5.2	18.1			
									2	28.9	8.2	29.4	6.6	100.5	5.2	18.0	6.5		
							Middle	5.8	2	28.9 28.9	8.2 8.2	29.4 29.4	6.5	99.4 99.3	6.9 6.9	20.3 20.4		7.6	20.1
							Bottom	10.6	2	28.9	8.2	29.4	6.5	99.3 99.9	6.9	20.4 21.7		-	
							Dottoin	10.0	2	28.9	8.2	29.5	6.6	100.2	10.5	21.8	6.6		
		TCE-WQM3A	Sunny	Moderate	12:01	4.7	Surface	1.0	1	29.0	7.9	29.3	6.9	105.4	4.6	12.4			
			2						2	29.0	7.9	29.3	6.9	105.4	4.5	12.1	6.9	5.3 1	16.2
							Bottom	3.7	1	28.8	7.9	29.5	6.7	102.5	6.0	20.2	6.6	5.5	10.2
									2	28.7	7.9	29.5	6.5	99.6	6.0	20.1	0.0		
		TCE-WQM4	Sunny	Moderate	12:13	3.8	Surface	1.0	2	29.2	7.8	29.8	6.6	101.4	5.2	11.1	6.6		
							Bottom	2.8	2	29.2 29.1	7.8 7.8	29.8 29.9	6.6	101.5 102.3	5.3 8.4	11.3 16.3		6.8	13.7
							Dottoin	2.0	2	29.1	7.8	29.9	6.7	102.3	8.4	16.0	6.7		
27-09-2019	Mid-Flood	TCE-C1	Sunny	Rough	16:51	7.5	Surface	1.0	1	29.3	8.1	29.1	6.8	102.5	5.5	20.6			
			-	0					2	29.3	8.1	29.1	6.8	103.7	5.5	21.0	6.6		
							Middle	3.8	1	29.1	8.2	29.7	6.5	99.8	8.9	22.2	8.2	22.4	
									2	29.1	8.2	29.7	6.5	99.8	8.9	22.0	8.2	0.2	22.4
							Bottom	6.5	2	29.0	8.2 8.2	29.9 29.9	6.4	97.4 97.5	10.0 10.1	24.0 24.4	6.4		
		TCE-C2	Sunny	Moderate	18:54	14.3	Surface	1.0	1	29.0 29.0	8.0	30.5	6.4 5.8	97.5 89.3	3.4	17.8			
		101-02	Sunny	woderate	10.54	14.5	Surface	1.0	2	29.0	8.0	30.5	5.8	89.3	3.5	17.6			
							Middle	7.2	1	29.0	7.9	30.6	5.7	88.2	4.2	21.1	5.8	4.7	20.4
									2	29.0	7.9	30.6	5.7	88.2	4.3	20.9		4.7	20.4
							Bottom	13.3	1	29.0	7.8	30.7	5.7	88.1	6.3	22.7	5.7		
		TOT WORK	6	NG2	17:34	0.2	6 × 1	1.0	2	29.0	7.8	30.7 29.9	5.7	88.1	6.4	22.5 23.3			
		TCE-WQM1	Sunny	Moderate	17:34	9.2	Surface	1.0	2	29.3 29.3	8.0	29.9	6.8 6.8	104.4 104.4	4.9 4.9	23.3 22.9			
							Middle	4.6	1	29.3	8.0	29.9	6.8	104.4	6.6	22.9	6.8		
									2	29.3	8.0	29.9	6.8	104.0	6.6	22.5		6.6	23.3
							Bottom	8.2	1	29.3	8.1	29.9	6.8	104.2	8.4	24.3	6.8	1	
				1	1				2	29.3	8.1	29.9	6.8	104.2	8.4	23.9	0.0	1	
		TCE-WQM2a	Sunny	Moderate	18:10	7.2	Surface	1.0	2	29.1 29.1	7.9	29.2 29.2	6.6	100.8	4.4	14.6 15.0			
							Middle	3.6	2	29.1 29.1	7.9	29.2 29.2	6.6	100.8 100.5	4.4 8.7	15.0	6.6		
							ivituue	5.0	2	29.1	7.9	29.2	6.6	100.5	8.7	15.2		7.9	15.5
							Bottom	6.2	1	29.1	7.9	29.5	6.6	101.6	10.7	16.7		1	
									2	29.1	7.9	29.5	6.6	101.6	10.7	16.7	6.6		
		TCE-WQM2b	Sunny	Moderate	18:21	10.4	Surface	1.0	1	29.0	7.9	29.4	6.4	97.9	4.2	20.7			
									2	29.0	7.9	29.4	6.4	97.9	4.3	21.0	6.4		
							Middle	5.2	2	29.0 29.0	7.8 7.8	29.6 29.6	6.3	97.1 97.1	5.2 5.3	22.4 22.2		6.6	22.0
							Bottom	9.4	1	29.0	7.8	29.6	6.3	97.1	5.3	22.2		+	
							podom	2.11	2	29.0	7.9	29.6	6.4	97.8	10.2	23.0	6.4		
		TCE-WQM3A	Sunny	Moderate	17:59	4.1	Surface	1.0	1	29.2	7.7	29.6	6.7	103.5	4.4	11.9	6.7	1	
			-						2	29.2	7.7	29.6	6.7	103.5	4.5	11.6	6.7	4.9	12.0
							Bottom	3.1	1	29.1	7.8	29.6	6.6	101.8	5.3	12.2	6.6	7.7	12.0
		TOT WORK	6	N. 1	15.15	2.1	C	1.0	2	29.1	7.8	29.6	6.6	101.8	5.4	12.4			
		TCE-WQM4	Sunny	Moderate	17:47	3.4	Surface	1.0	2	29.0 29.0	7.9 7.9	29.7 29.7	6.7	103.2 103.1	6.6	24.3 24.1	6.7		
							Bottom	2.4	1	29.0	7.9	29.7 29.8	6.7	103.1 103.1	6.7	25.0		7.6	24.7
							Dottom	~~~	2	29.1	7.8	29.7	6.7	103.1	8.5	25.4	6.7		
L				1	1	1								r		1			

			Weather			Water Depth		Sampling depth		Water		Salinity	Dissolved	DO Saturation	Turbidity	Suspended Solids		Depth-averaged	-		
Date	Tide	Station	Condition	Sea Condition	Sampling Time	(m)	Water Level	(m)	Replicate	Temperature (°C)	pH	(ppt)	Oxygen (DO) (mg/L)	(%)	(NTU)	(SS) (mg/L)	DO (mg/L)	Turbidity (NTU)	SS (mg/L)		
30-09-2019	Mid-Ebb	TCE-C1	Sunny	Rough	12:20	7.7	Surface	1.0	1	29.2	7.9	30.8	5.9	91.9	5.5	13.8	(119/2)	((
			-	-					2	29.2	7.9	30.8	5.9	91.9	5.5	13.9	5.9				
							Middle	3.9	1	29.1	7.9	31.0	5.9	91.2	5.8	13.7	5.5	5.9	14.1		
							Bottom	6.7	2	29.1 29.2	7.9 7.9	31.0 31.0	5.9	91.2 92.1	5.9 6.2	13.6 14.9		-			
							Doutoin	0.7	2	29.2	7.9	31.0	6.0	92.2	6.2	14.5	6.0				
		TCE-C2	Sunny	Moderate	14:02	14.5	Surface	1.0	1	29.4	8.0	29.5	5.6	85.8	6.2	15.3					
									2	29.4	8.0	29.5	5.6	85.9	6.3	15.0	5.6				
							Middle	7.3	1	29.4	8.0	29.5	5.6	85.8	9.7	16.9		9.6	16.6		
							Bottom	13.5	2	29.4 29.4	8.0 7.9	29.5 29.5	5.6 5.7	85.8 88.2	9.8 12.9	16.5 18.0		-			
							Doutoin	15.5	2	29.4	7.9	29.5	5.7	88.4	12.9	17.8	5.7				
		TCE-WQM1	Sunny	Moderate	13:01	10.7	Surface	1.0	1	29.3	7.9	29.4	5.6	86.6	5.7	21.0					
									2	29.3	7.9	29.4	5.6	86.6	5.7	21.2	5.6				
							Middle	5.4	1	29.3	7.9	29.4	5.7	86.9	8.5	22.3		8.7	21.7		
							Bottom	9.7	2	29.3 29.3	7.9 7.9	29.4 29.4	5.7 5.7	86.9 88.3	8.5 11.8	22.1 22.0		-			
							Doutoin	2.1	2	29.3	7.9	29.4	5.8	88.7	11.9	21.7	5.8				
		TCE-WQM2a	Sunny	Moderate	13:32	8.8	Surface	1.0	1	29.4	8.0	29.3	5.6	86.7	6.9	12.3					
									2	29.4	8.0	29.3	5.6	86.7	6.9	12.1	5.6				
							Middle	4.4	1	29.3	8.0	29.4	5.5	85.0	8.8	13.6		9.3	13.2		
							Bottom	7.8	2	29.3 29.2	8.0 7.9	29.4 29.8	5.5	84.9 82.0	8.8 12.1	13.8 13.8		-			
							Doutoin	7.0	2	29.2	7.9	29.8	5.3	82.0	12.1	13.8	5.3				
		TCE-WQM2b	Sunny	Moderate	13:43	11.9	Surface	1.0	1	29.4	8.0	28.6	5.8	89.2	7.7	13.2					
									2	29.3	8.0	28.6	5.6	85.8	7.8	13.3	5.6				
							Middle	6.0	1	29.2	7.9	29.0	5.5	84.6	10.2	13.3		10.2	12.5		
							Bottom	10.9	2	29.2 29.3	7.9 7.9	29.0 29.2	5.5 5.6	84.6 86.6	10.2	12.9 11.1		-			
							Bottom	10.9	2	29.3	7.9	29.2	5.7	87.2	12.6	11.1	5.7				
		TCE-WQM3A	Sunny	Moderate	13:22	4.2	Surface	1.0	1	29.4	7.9	29.1	5.7	87.5	4.3	7.2	5.7				
									2	29.4	7.9	29.1	5.7	87.4	4.3	6.8	5.7	5.5	7.6		
							Bottom	3.2	1	29.4	7.9	29.2	5.7	87.5	6.6	8.4	5.7	- 5.5	7.0		
		TCE-WQM4	6	Moderate	13:12	4.5	Surface	1.0	2	29.4 29.4	7.9 8.0	29.2 29.3	5.7 5.7	87.6 87.6	6.6 5.3	8.0	-				
		TCE-WQM4	Sunny	woderate	13:12	4.5	Surrace	1.0	2	29.4	8.0	29.3	5.7	87.6	5.3	11.1	5.7				
							Bottom	3.5	1	29.3	8.0	29.3	5.7	88.2	9.8	11.2		7.5	11.3		
									2	29.3	8.0	29.3	5.8	88.5	9.8	11.4	5.8				
30-09-2019	Mid-Flood	TCE-C1	Fine	Rough	9:20	7.4	Surface	1.0	1	28.9	7.9	30.5	5.7	87.8	4.6	13.0					
							Middle	3.7	2	28.9 28.9	7.9 7.9	30.6	5.7	87.8	4.6	13.3	5.7				
							Middle	3./	2	28.9	7.9	31.3 31.3	5.7	87.7 87.7	8.5 8.6	13.2 13.3	7.9	7.9 12.8	12.8		
							Bottom	6.4	1	28.9	8.0	31.5	5.7	88.2	10.6	12.1		+			
									2	28.9	8.0	31.5	5.7	88.4	10.7	11.9	5.7				
		TCE-C2	Fine	Moderate	7:11	14.3	Surface	1.0	1	29.1	7.8	29.2	5.4	83.4	1.2	16.4					
							Middle	7.2	2	29.1 29.1	7.8	29.2 29.7	5.4	83.3 81.5	1.2 2.8	16.0 17.0	5.4				
							Middle	1.2	2	29.1	7.7	29.7	5.3	81.5	2.8	17.0		2.8	17.4		
							Bottom	13.3	1	29.1	7.7	29.8	5.3	81.5	4.5	19.3		1			
									2	29.1	7.7	29.8	5.3	81.5	4.6	19.0	5.3				
		TCE-WQM1	Fine	Moderate	8:31	9.5	Surface	1.0	1	29.0	7.9	29.4	5.6	85.7	4.3	12.0					
							Middle	4.8	2	29.0 29.0	7.9 7.9	29.4 29.4	5.6 5.6	85.7 85.6	4.3 6.5	12.3 11.0	5.6				
				1			iviiddie	4.0	2	29.0	7.9	29.4	5.6	85.6	6.5	11.0		6.9	11.5		
							Bottom	8.5	1	29.0	7.9	29.4	5.7	86.8	9.7	11.2	5.7	1			
									2	29.0	7.9	29.4	5.7	86.9	9.7	11.2	5.7				
		TCE-WQM2a	Fine	Moderate	7:53	8.6	Surface	1.0	1	29.1	8.0	29.1	5.5	84.7	7.7	13.0		1			
				1			Middle	4.3	2	29.1 29.1	8.0 8.0	29.1 29.2	5.5 5.5	84.7 84.6	7.7	13.4 15.9	5.5	1			
							windule	4.3	2	29.1	8.0	29.2	5.5	84.6	6.8	15.5		8.4	15.2		
							Bottom	7.6	1	29.1	8.0	29.3	5.6	85.4	10.7	16.5	5.6	1			
									2	29.1	8.0	29.3	5.6	85.6	10.7	16.7	5.0				
		TCE-WQM2b	Fine	Moderate	7:33	10.2	Surface	1.0	1	29.1	7.9	29.1	5.5	84.4	3.2	14.6					
				1			Middle	5.1	2	29.1 29.1	7.9 7.9	29.1 29.1	5.5	84.3 84.2	3.2 6.3	14.5 15.0	5.5	1			
							windule	3.1	2	29.1	7.9	29.1	5.5	84.3	6.4	15.0		6.1	15.1		
							Bottom	9.2	1	29.1	7.9	29.2	5.6	85.7	8.6	15.9	5.6	1			
									2	29.1	7.9	29.2	5.6	85.9	8.6	15.5	5.6				
1		TCT MON OLA	Fine	Moderate	8:07	4.3	Surface	1.0	1	29.0	7.9	29.2	5.5	83.8	9.0	12.0	5.5				
		TCE-WQM3A						1 1	2	29.0	7.9	29.2	5.5	84.0	9.0	12.1		1	12.4		
		ICE-WQM3A					Bottom	3.3	1	28.8	79	20.4	5.6	85.7	0.3	12.5		9.1	12.4		
		ICE-WQM5A					Bottom	3.3	1 2	28.8 28.7	7.9 7.9	29.4 29.4	5.6 5.7	85.7 85.9	9.3 9.3	12.5 12.8	5.6	9.1	12.4		
		TCE-WQM3A	Fine	Moderate	8:18	3.8	Bottom Surface	3.3	1 2 1	28.8 28.7 29.0	7.9 7.9	29.4 29.4 29.3	5.6 5.7 5.6	85.7 85.9 85.5	9.3 9.3 4.8	12.5 12.8 12.0		9.1	12.4		
				Moderate	8:18	3.8	Surface	1.0	2	28.7 29.0 29.0	7.9 7.9 7.9	29.4 29.3 29.3	5.7 5.6 5.6	85.9 85.5 85.5	9.3 4.8 4.8	12.8 12.0 12.2	5.6 5.6				
				Moderate	8:18	3.8			2	28.7 29.0	7.9 7.9	29.4 29.3	5.7 5.6	85.9 85.5	9.3 4.8	12.8 12.0		9.1	13.2		

Annex G4

Event and Action Plan for Water Quality

Event			Action	
Event	ЕТ	IEC	ER	Contractor
Action level exceedance for	1. Inform IEC, Contractor and ER;	1. Discuss with ET, ER and	1. Discuss with IEC, ET and	1. Identify source(s) of impact;
one sampling day	2. Check monitoring data, all plant, equipment and	Contractor on the implemented mitigation measures;	Contractor on the implemented mitigation measures;	2. Inform the ER and confirm notification of the non-compliance in writing;
	Contractor's working methods;	2. Review proposals on remedial	2. Make agreement on the remedial	Rectify unacceptable practice;
	and	measures submitted by Contractor	measures to be implemented;	4. Check all plant and equipment;
	3. Discuss remedial measures	and advise the ER accordingly;	3. Supervise the implementation of	5. Consider changes of working methods;
	with IEC and Contractor and ER.	and 3. Review and advise the ET and ER	agreed remedial measures.	6. Discuss with ER, ET and IEC and purpose remedial measures to IEC and ER; and
		on the effectiveness of the implemented mitigation measures.		7. Implement the agreed mitigation measures.
Action level exceedance for more than one consecutive sampling days	 Repeat in-situ measurement on next day of exceedance to confirm findings; 	 Discuss with ET, Contractor and ER on the implemented mitigation measures; 	 Discuss with ET, IEC and Contractor on the proposed mitigation measures; 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing;
	2. Inform IEC, contractor and ER;	2. Review the proposed remedial	2. Make agreement on the remedial	3. Rectify unacceptable practice;
	 Check monitoring data, all plant, equipment and Contractor's working methods; 	measures submitted by Contractor and advise the ER accordingly;	0	
	 Discuss remedial measures with IEC, contractor and ER Ensure remedial measures are 	3. Review and advise the ET and ER on the effectiveness of the implemented mitigation	the implemented remedial measures.	proposal of remedial measures to ER and IEC within 3 working days of notification; and
	implemented	measures.		6. Implement the agreed mitigation measures.

Annex G4 Event and Action Plan for Water Quality

Event			Action	
Event	ET	IEC	ER	Contractor
Limit level exceedance for one sampling day	 Repeat measurement on next day of exceedance to confirm findings; Inform IEC, contractor and ER; 	 Discuss with ET, Contractor and ER on the implemented mitigation measures; Review the proposed remedial 	 Discuss with ET, IEC and Contractor on the implemented remedial measures; Request Contractor to critically 	 Identify source(s) of impact; Inform the ER and confirm notification of the non-compliance in writing; Rectify unacceptable practice;
	 Rectify unacceptable practice; Check monitoring data, all plant, equipment and Contractor's working methods; Consider changes of working methods; Discuss mitigation measures with IEC, ER and Contractor; and Ensure the agreed remedial measures are implemented 	measures submitted by Contractor and advise the ER accordingly; and	 a. An equation to contractor to contractory review the working methods; 3. Make agreement on the remedial measures to be implemented; and 4. Discuss with ET, IEC and Contractor on the effectiveness of the implemented remedial measures. 	 Check all plant and equipment and consider changes of working methods; Discuss with ET, IEC and ER and submit proposal of additional mitigation measures to ER and IEC within 3 working days of notification; and Implement the agreed remedial measures.
Limit level exceedance for more than one consecutive sampling days	3. Discuss mitigation measures with IEC, ER and Contractor; and	 Discuss with ET, Contractor and ER on the implemented mitigation measures; Review the proposed remedial measures submitted by Contractor and advise the ER accordingly; and Review and advise the ET and ER on the effectiveness of the implemented mitigation measures. 	 Discuss with ET, IEC and Contractor on the implemented remedial measures; Request Contractor to critically review the working methods; Make agreement on the remedial measures to be implemented; Discuss with ET and IEC on the effectiveness of the implemented mitigation measures; and Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the dredging activities until no exceedance of Limit level. 	

Annex H

Soft Shore Ecology

Annex H1

Monitoring Schedule for Soft Shore Ecology

Tung Chung New Town Extension (East) Soft Shore Ecological Monitoring Schedule (September 2019)

Sunday	Monday	Tuesday	Wednesday	Thursday		Saturday
1-Sep	2-Sep	3-Sep	4-Sep	5-Sep	6-Sep	7-Sep
8-Sep	9-Sep	10-Sep	11-Sep	12-Sep	13-Sep	14-Sep
	Coft Chara Manitaring at	Soft Share Menitoring of	Soft Share Manitoring of	Coff Chara Manifering of		
	Soft Shore Monitoring at	Soft Shore Monitoring at	Soft Shore Monitoring at			
	Tai Ho Bay	Tung Chung Bay	Tung Chung Bay	Tai Ho Bay		
15-Sep	16-Sep	17-Sep	18-Sep	19-Sep	20-Sep	21-Sep
22-Sep	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep	28-Sep
29-Sep	30-Sep					

Annex H2

Monitoring Results for Soft Shore Ecology

Table H2.1Results for Horseshoe Crabs during Qualitative Walk-through Surveys in
September 2019

Sighting #	Species	Prosomal Width (cm)	Total Length (cm)
Monitoring	Date: 10 September 2019 13:00	-15:00	- , ,
	Station: TCB2		
1	Tachypleus tridentatus	3.0	5.5
2	Tachypleus tridentatus	2.1	3.8
	Mean (Range)	2.6 (2.1-3.0)	4.7 (3.8-5.5)
Monitoring	Date: 11 September 2019 11:45	-16:30	
0	Station: TCB1		
1	Tachypleus tridentatus	2.9	5.0
2	Tachypleus tridentatus	2.3	5.1
3	Tachypleus tridentatus	2.6	5.0
4	Tachypleus tridentatus	2.4	5.0
5	Tachypleus tridentatus	3.0	5.3
	Mean (Range)	2.6 (2.3-3.0)	5.1 (5.0-5.3)
	Date: 11 September 2019 10:45	-14:45	
1	Station: TCB3 <i>Carcinoscorpius rotundicauda</i>	2.7	5.4
1 2	Carcinoscorpius rotundicauda	2.7	5.4 5.4
2	Carcinoscorpius rotundicauda	2.8 1.9	3.4 3.6
4	Tachypleus tridentatus	1.9	3.0
5	Carcinoscorpius rotundicauda	1.8	3.8
6	Tachypleus tridentatus	3.0	6.0
0 7	Carcinoscorpius rotundicauda	3.0 4.7	10.5
8	Tachypleus tridentatus	4.7	8.7
9	Tachypleus tridentatus	4.5 6.3	13.0
9 10	Tachypleus tridentatus	2.6	4.8
10	Carcinoscorpius rotundicauda	2.6	4.8 5.1
11	Tachypleus tridentatus		8.9
12	Carcinoscorpius rotundicauda	4.8	8.8
13	Carcinoscorpius rotundicauda	4.4 5.5	11.2
14	Carcinoscorpius rotundicauda	5.5 4.7	9.6
15	Carcinoscorpius rotundicauda		9.0 7.4
	•	3.5	
17	Carcinoscorpius rotundicauda Carcinoscorpius rotundicauda	5.2	11.1
18 10	Tachypleus tridentatus	4.3	8.8 9 F
19 20	Tachypleus tridentatus	4.6	8.5 9.2
	51	4.7	
21 22	Tachypleus tridentatus Tachypleus tridentatus	6.1	12.6
22	Tachypleus tridentatus Tachypleus tridentatus	3.6	6.5 8 5
23 24	Tachypleus tridentatus Tachypleus tridentatus	4.5	8.5 5 2
24 25	Tachypleus tridentatus	2.8	5.3
25 26	Carcinoscorpius rotundicauda	4.7	8.6
26 27	Carcinoscorpius rotundicauda	3.2	6.4 5.6
27	Carcinoscorpius rotundicauda	2.9	5.6
	Mean (Range)	3.9 (1.8 - 6.3)	7.6 (3.0 – 13.0)
	Date: 12 September 2019 13:00 Station: THW	-15:00	
1	Carcinoscorpius rotundicauda	2.5	4.8
2	Tachypleus tridentatus	1.8	3.4
3	Carcinoscorpius rotundicauda	2.2	4.1
4	Carcinoscorpius rotundicauda	1.9	3.5
5	Carcinoscorpius rotundicauda	2.3	5.5
6	Tachypleus tridentatus	0.9	1.8
7	Tachmleus tridentatus	15	31

1.5

0.6

3.1

0.9

7

8

Tachypleus tridentatus

Tachypleus tridentatus

Sighting #	Species	Prosomal Width (cm)	Total Length (cm)
9	Carcinoscorpius rotundicauda	2.5	4.8
10	Carcinoscorpius rotundicauda	1.4	2.4
11	Tachypleus tridentatus	2.3	3.5
12	Tachypleus tridentatus	1.3	2.7
13	Tachypleus tridentatus	1.4	2.1
14	Tachypleus tridentatus	1.6	2.3
15	Tachypleus tridentatus	1.5	2.8
16	Tachypleus tridentatus	1.6	2.8
17	Tachypleus tridentatus	0.8	1.1
18	Tachypleus tridentatus	0.8	1.2
19	Tachypleus tridentatus	0.8	1.1
20	Tachypleus tridentatus	1.7	2.3
21	Tachypleus tridentatus	1.8	2.8
22	Carcinoscorpius rotundicauda	2.0	3.8
	Mean (Range)	1.6 (0.6 - 2.5)	2.9 (0.9 - 5.5)

Table H2.2Results for Seagrass during Qualitative Walk-through Surveys in September2019

Sighting #	Species	Area (m2)	Area Coverage (%)	Seagrass Area (m2)									
Monitoring	Monitoring Date: 11 September 2019 10:45-14:45												
Monitoring	station: TCB3												
1	Halophila ovalis	1.0	40%	0.4									

Monitoring Station	Shore Height *	No. of Species
TCB1	Н	45
	М	42
	L	37
	Overall	58
TCB2	Н	32
	М	32
	L	29
	Overall	40
TCB3	Н	30
	М	33
	L	31
	Overall	44
THW	Н	40
	М	32
	L	30
	Overall	46

Table H2.3	Results for Other Intertidal Soft Shore Communities during Qualitative
	Walk-through Surveys in September 2019

* H: +2mCD; M: +1.5mCD; L: +1mCD

Monitoring Station	Shore Height *	Top Three Dominant Species	Density (ind./m²)
TCB1	Н	1 Batillaria multiformis	185.6
1001		2 Cerithidea diadjariensis	88.8
		3 Monodonta labio	52.8
	М	1 Cerithidea diadjariensis	99.2
	1,1	2 Monodonta labio	92.8
		3 Cerithidea cingulata	59.2
	L	1 Batillaria zonalis	122.4
		2 Monodonta labio	42.4
		3 Lunella coronata	21.6
TCB2	Н	1 Monodonta labio	36.0
		2 Cerithidea diadjariensis	29.6
		3 Planaxis sulcatus	10.4
	М	1 Cerithidea diadjariensis	172.0
		2 Cerithidea cingulata	49.6
		3 Batillaria zonalis	5.6
	L	1 Batillaria multiformis	56.0
		2 Cerithidea diadjariensis	12.8
		3 Lunella coronata	10.4
TCB3	Н	1 Batillaria multiformis	864.0
		2 Cerithidea cingulata	153.6
		3 Cerithidea diadjariensis	105.6
	М	1 Cerithidea diadjariensis	212.0
		2 Batillaria multiformis	118.4
		3 Batillaria zonalis	26.4
	L	1 Batillaria zonalis	62.4
		2 Lunella coronata	5.6
		3 Nassarius festivus	4.0
THW	Н	1 Nassarius festivus	199.2
		2 Cerithidea diadjariensis	73.6
		3 Cerithidea cingulata	36.0
	Μ	1 Nassarius festivus	224.8
		2 Cerithidea diadjariensis	46.4
		3 Cerithidea cingulata	12.0
	L	1 Cerithidea diadjariensis	219.2
		2 Batillaria zonalis	96.8
		3 Batillaria multiformis	38.4

Table H2.4Results for Other Intertidal Soft Shore Communities during Quantitative
Transect Surveys in September 2019

* H: +2mCD; M: +1.5mCD; L: +1mCD

			TCB1			TCB2			TCB3			THW	
Group	Species	н	M	L	н	M	L	н	м	L	н	м	L
Algae	Enteromorpha spp.				+			++					
Anemone	Haliplanella lineata									+			
Barnacle	Balanus amphitrite	++	+	+	+	+	+	++	+	+	+	+	+
Bivalve	Anomalocardia squamosa			+			+	+	+	+			+
Bivalve	Barbatia virescens		+	+					+	+			
Bivalve	Circe sp.												+
Bivalve	Coecella chinensis	+		+							+	+	
Bivalve	Corbula erythrodon									+			
Bivalve	Cyclina sinensis	+						+	+			+	+
Bivalve Bivalve	Donax sp. Dosinia japonica	+	+										
Bivalve	Ervilia sp.	· ·		+	+	+	+			+			
Bivalve	Geloina erosa	+	+	+	++	+	+	+	+		++	+	+
Bivalve	Glauconome chinensis			-							+	+	+
Bivalve	Gafrarium tumidum					+							
Bivalve	Laternula anatina				+	+	+						
Bivalve	Panopea generosa	+											
Bivalve	Saccostrea cucullata	++	++	++	++	++	++	++	++	++	++	+	+
Bivalve	Septifer virgatus	+	+	+		+	+		+	+			
Bivalve	Tapes variegatus		+	+									
Bivalve	Venerupis aspera	+		+				+					
Bivalve	Venerupis philippinarum	+	+							+			
Chiton	Acanthopleura japonica			+									
Crab	Clistocoeloma sp.	+		+	+						+		
Crab	Hemigrapsus sanguineus	+	+	+	+	+	+	+	+		++	+	+
Crab Crab	Macrophthalmus sp. Metaplazx longipes	+	+	+	+	+	+		+	+	+ +	+	+ +
Crab	Metapograpsus frontalis	+	+	+	+	+	+		+	+	+ +	+	+ +
Crab	Parasesarma pictum	-	+	+	+	Ŧ	Ŧ		+	*	+	+ +	+
Crab	Perisesarma bidens	++	+		+	+	+		+		+	+	+
Crab	Philyra pisum	+											
Crab	Scopimera globosa	+	+	+	+	+	+	+	+	+	++	+	+
Crab	Thalamita crenata										+	+	
Crab	Uca borealis	+	+	+		+		+			++	+	+
Crab	Uca lactea	++	++		++	++	++	++	++		++	++	++
Crab	Uca crassipes	+	+								++		
Crab	Uca splendida				+								
Crab	Varuna litterata											+	
Fish	Terapon jarbua										+	+	+
Fish	Mugilidae sp.										+		
Fish	Periophthalmus cantonensis	+	+	+	++	++	+	+	+		+	+	+
Gastropod	Batillaria multiformis	++	+	+	++	+	++	++	++	++	+	++	++
Gastropod	Batillaria zonalis	+	++	++	+	+	++	+	+	+	+	++	++
Gastropod	Cellana grata	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+	+ ++
Gastropod Gastropod	Cerithidea cingulata Cerithidea diadjariensis	++	++	+	++	++	++	++	++	++	++	++	++
Gastropod	Cerithidea microptera			т	+		++	+			+	+	+
Gastropod	Cerithidea rhizophorarum		+					+					+
Gastropod	Chlorostoma argyrostoma		+								+		
Gastropod	Clithon spp.	+	+	+	+		+	+	+	+	+	+	+
Gastropod	Echinolittorina radiata						+						
Gastropod	Echinolittorina malaccana									+			
Gastropod	Littoraria articulata	++	+	+	++	+	+	++	+	+	+		
Gastropod	Littoraria melanostoma	+			+	+	+	+	+		+		
Gastropod	Lunella coronata	+	+	+		+	+	+	+	+			
Gastropod	Monodonta labio	++	++	++	++	+	+	++	++	+	+	+	
Gastropod	Nassarius festivus	+	+	+	+	+	+	+	+	+	+	+	+
Gastropod	Nerita albicilla	+				+	+						
Gastropod	Nerita polita	+	+	+				+	+	+	+	+	+
Gastropod	Nipponacmea concinna		+	+									
Gastropod	Patelloida pygmaea	+	+					<u> </u>					
Gastropod	Planaxis sulcatus	+	+		+	+		+	+	+	+		
Gastropod	Terebralia palustris	+	+	+				+	+	+	+ +	+	
Gastropod	Terebralia sulcata Thais clavigera	<u> </u> [−]	-	+ +				+ *	+ +	+ +	-	-	
Gastropod Hermit Crab	Clibanarius sp.	+	+	+ +	+	+	+	+	+ +	+ +	+	+	+
Horseshoe Crab	Cilibariarius sp. Carcinoscorpius rotundicauda	- ⁻	- T	т	- T	+ +	Ŧ	- T	- T	- T	т 	Ŧ	т Т
Horseshoe Crab	Tachypleus tridentatus	+	+					<u> </u>	+	+		+	+
Sea Slater	Ligia oceanica	+			+	+					+	+	+
Seaslug	Onchidium sp.	+	+		+						+		
Seagrass	Halophila ovalis									+			
Worm	Ampharetidae sp.	+									+	+	
Worm	Harmothoe imbricata			+									
	Ochetostoma erythrogrammon		+										
Worm			+	+	+	+	+						
Worm	Oligochaete sp.	+		т									
Worm Worm	Siphonosoma sp.		+					+	+				
Worm		+ + + +		+++	+	+		+	+ +	+			

Remark:

'+' denotes the species was relatively rare at the area;

'++' denotes the species was relatively abundant at the area.

											т	CB1							
Group	Species	Н1	H2	H3	H4	Н5	Density (ind. / m ² or % cover)	М1	M2	М3	M4	M5	Density (ind. / m ² or % cover)	ц	L2	L3	L4	L5	Density (ind. / m ² or % cover)
Barnacle	Balanus amphitrite																	<5%	<5%
Bivalve	Anomalocardia squamosa																		
Bivalve	Barbatia virescens							3	3				4.8	9	1		2	3	12.0
Bivalve	Coecella chinensis				1		0.8												
Bivalve	Cyclina sinensis		2				1.6												
Bivalve	Ervilia sp.						0.0									1			0.8
Bivalve	Geloina erosa			4			3.2	2				1	2.4			1			0.8
Bivalve	Gafrarium tumidum																		
Bivalve	Laternula anatina																		
Bivalve	Panopea generosa		1				0.8												
Bivalve	Saccostrea cucullata	<5%		5%	5%	<5%	<5%				25%	15%	8%	30%			20%	10%	12%
Bivalve	Septifer virgatus				1	1	1.6	1					0.8	22				2	19.2
Bivalve	Tapes variegatus											1	0.8			1		6	5.6
Chiton	Acanthopleura japonica																	1	0.8
Crab	Hemigrapsus sanguineus				1		0.8		4				3.2	3				3	4.8
Crab	Macrophthalmus sp.													-					
Crab	Uca lactea																		
Gastropod	Batillaria multiformis	150	5	25	45	7	185.6	10				2	9.6				3	6	7.2
Gastropod	Batillaria zonalis	14	10			4	26.4	6		8	24	20		24	22	40	37	30	
Gastropod	Cellana grata			_	-			1		-			0.8					1	
Gastropod	Cerithidea cingulata	1	20	1			17.6	1	4	3	35	31	59.2						
Gastropod	Cerithidea diadjariensis	1	25	85			88.8	4	11	28	40	41	99.2	5			10	2	13.6
Gastropod	Cerithidea microptera													-					
Gastropod	Clithon spp.							1					0.8						
Gastropod	Littoraria articulata				2		1.6												
Gastropod	Lunella coronata			3	-		2.4		4		2	1	5.6	18			3	6	21.6
Gastropod	Monodonta labio	5	1	1		2	52.8	56	36	21	1	2		34		9	2	8	
Gastropod	Nassarius festivus	5	-	-		-	52.0		50	1	1	-	1.6	5.	1	1	-	3	
Gastropod	Nerita albicilla									-	-		1.0		-	-		9	
Gastropod	Nerita polita		1				0.8	2	1		1		3.2					1	0.8
Gastropod	Nipponacmea concinna		- 1				0.0	- 2	1		1		5.2	1				1	
Gastropod	Planaxis sulcatus													- 1					1.0
Gastropod	Terebralia sulcata																		
Hermit Crab	Clibanarius sp.													3					2.4
Seaslug	Onchidium sp.				1		0.8							3					2.4
Worm	Harmothoe imbricata				<u> </u>		0.0							1					0.8
Worm	Oligochaete sp.													- 1				1	0.8
Worm		_			<u> </u>			1					0.8					- 1	0.8
	Siphonosoma sp.							1					0.8	2					1.6
Worm	Sipunculus sp.			I	1	I					I			2		I		1	1.6

											тс	B2							
Group	Species	Н1	H2	НЗ	H4	H5	Density (ind. / m ² or % cover)	М1	M2	M3	M4	M5	Density (ind. / m ² or % cover)	ц	L2	L3	L4	L5	Density (ind. / m ² or % cover)
Barnacle	Balanus amphitrite																		
Bivalve	Anomalocardia squamosa													2	1				2.4
Bivalve	Barbatia virescens																		
Bivalve	Coecella chinensis																		
Bivalve	Cyclina sinensis																		
Bivalve	Ervilia sp.				1		0.8	1	1				1.6		1				0.8
Bivalve	Geloina erosa	2					1.6	1			1	2	3.2						
Bivalve	Gafrarium tumidum									2			1.6						
Bivalve	Laternula anatina													2		1	1		3.2
Bivalve	Panopea generosa																		
Bivalve	Saccostrea cucullata			10%	<5%		<5%							10%	10%	5%			5%
Bivalve	Septifer virgatus																		
Bivalve	Tapes variegatus																		
Chiton	Acanthopleura japonica																		
Crab	Hemigrapsus sanguineus																		
Crab	Macrophthalmus sp.																		
Crab	Uca lactea																		
Gastropod	Batillaria multiformis														10	29	18	13	56.0
Gastropod	Batillaria zonalis							2		3	2		5.6		3			2	
Gastropod	Cellana arata							_		-									
Gastropod	Cerithidea cinqulata	1				2	2.4	10	13	12	19	8	49.6		1				0.8
Gastropod	Cerithidea diadjariensis	31				6		52	66	22	44				8	7		1	
Gastropod	Cerithidea microptera	2				-	1.6	-											
Gastropod	Clithon spp.													1					0.8
Gastropod	Littoraria articulata													_					
Gastropod	Lunella coronata													12		1			10.4
Gastropod	Monodonta labio	1	14	14	16		36.0									-			10.1
Gastropod	Nassarius festivus	-					50.0								3				2.4
Gastropod	Nerita albicilla										1		0.8	1	5				0.8
Gastropod	Nerita polita										-		0.0	-					0.0
Gastropod	Nipponacmea concinna																		
Gastropod	Planaxis sulcatus			11	2		10.4												
Gastropod	Terebralia sulcata				2		10.4												
Hermit Crab	Clibanarius sp.													1				1	0.8
Seaslug	Onchidium sp.				1		0.8							- 1				1	0.0
Worm	Harmothoe imbricata				1		0.0											1	
Worm	Oligochaete sp.	-																	
Worm	Siphonosoma sp.	-																	
	a posto a supervisión de la composición de la composicinde la composición de la composición de la comp	-																	
Worm	Sipunculus sp.																		

											TCB	3							
Group	Species	H1	H2	нз	Н4	Н5	Density (ind. / m ² or % cover)	М1	M2	M3	M4	M5	Density (ind. / m ² or % cover)	LI	L2	L3	L4	L5	Density (ind. / m ² or % cover)
Barnacle	Balanus amphitrite																		
Bivalve	Anomalocardia squamosa		1	1			1.6								1				0.8
Bivalve	Barbatia virescens																		
Bivalve	Coecella chinensis																		
Bivalve	Cyclina sinensis		3			1	3.2												
Bivalve	Ervilia sp.																		
Bivalve	Geloina erosa		2			1	2.4	2					1.6						
Bivalve	Gafrarium tumidum																		
Bivalve	Laternula anatina																		
Bivalve	Panopea generosa																		
Bivalve	Saccostrea cucullata			<5%	<5%	<5%	<5%	<5%			<5%		<5%	<5%	<5%	<5%	<5%	25%	9%
Bivalve	Septifer virgatus																		
Bivalve	Tapes variegatus																		
Chiton	Acanthopleura japonica																		
Crab	Hemigrapsus sanguineus																		
Crab	Macrophthalmus sp.																		
Crab	Uca lactea																		
Gastropod	Batillaria multiformis	200	100	250	260	270	864.0	35	3	40	65	5	118.4						
Gastropod	Batillaria zonalis	6	1	1	2	2	9.6	13	6	3	9			24	8	15	17	14	62.4
Gastropod	Cellana grata																		
Gastropod	Cerithidea cinqulata	140		22		30	153.6				10		8.0						
Gastropod	Cerithidea diadjariensis	10	29	50	43		105.6	61	30	58	66	50	212.0	1	1				1.6
Gastropod	Cerithidea microptera																		
Gastropod	Clithon spp.				6	5	8.8	1	10		1		9.6						
Gastropod	Littoraria articulata																		
Gastropod	Lunella coronata									2		3	4.0			1	2	4	5.6
Gastropod	Monodonta labio								1			1				1			0.8
Gastropod	Nassarius festivus	1					0.8		_					1	2		2		4.0
Gastropod	Nerita albicilla														-				
Gastropod	Nerita polita																		
Gastropod	Nipponacmea concinna																		
Gastropod	Planaxis sulcatus																		
Gastropod	Terebralia sulcata																		
Hermit Crab	Clibanarius sp.																		
Seaslug	Onchidium sp.				1	1		l —		1							1		
Worm	Harmothoe imbricata			1	-							1			1	1			
Worm	Oligochaete sp.	_																	
Worm	Siphonosoma sp.				-	-		I			-			<u> </u>			-		
Worm	Sipunculus sp.																		

		THW																	
Group	Species	H1	H2	НЗ	H4	H5	Density (ind. / m ² or % cover)	М1	M2	мз	M4	М5	Density (ind. / m ² or % cover)	L1	L2	L3	L4	L5	Density (ind. / m ² or % cover)
Barnacle	Balanus amphitrite																	<5%	<5%
Bivalve	Anomalocardia squamosa																1		
Bivalve	Barbatia virescens																		
Bivalve	Coecella chinensis																		
Bivalve	Cyclina sinensis																		
Bivalve	Ervilia sp.																		
Bivalve	Geloina erosa	5	15	10	4	6	32.0				4	2	4.8				1		0.8
Bivalve	Gafrarium tumidum																		
Bivalve	Laternula anatina																		
Bivalve	Panopea generosa																		
Bivalve	Saccostrea cucullata				<5%	<5%	<5%			<5%	<5%	<5%	<5%	<5%	10%			<5%	<5%
Bivalve	Septifer virgatus																		
Bivalve	Tapes variegatus																		
Chiton	Acanthopleura japonica																		
Crab	Hemigrapsus sanguineus		1				0.8												
Crab	Macrophthalmus sp.	1					0.8												
Crab	Uca lactea								1		1		1.6						
Gastropod	Batillaria multiformis													14	10	7	7	10	38.4
Gastropod	Batillaria zonalis													15	15	25	24	42	96.8
Gastropod	Cellana grata																		
Gastropod	Cerithidea cingulata	7		37	1		36.0				10	5	12.0				21		16.8
Gastropod	Cerithidea diadjariensis	53		39)		73.6			8	30	20	46.4	29	20	45	120	60	219.2
Gastropod	Cerithidea microptera																		
Gastropod	Clithon spp.			2	4		4.8									2			1.6
Gastropod	Littoraria articulata																		
Gastropod	Lunella coronata																		
Gastropod	Monodonta labio																		
Gastropod	Nassarius festivus	10	7	32	200		199.2	80	200	1			224.8			10			8.0
Gastropod	Nerita albicilla																		
Gastropod	Nerita polita																		
Gastropod	Nipponacmea concinna																		
Gastropod	Planaxis sulcatus							1											
Gastropod	Terebralia sulcata							1	1	2	7	2	9.6						
Hermit Crab	Clibanarius sp.																		
Seaslug	Onchidium sp.				1	1													
Worm	Harmothoe imbricata																		
Worm	Oligochaete sp.							1											
Worm	Siphonosoma sp.							1											
Worm	Sipunculus sp.			1						1	1	1							

Annex H3

Event and Action Plan for Soft Shore Ecology

Action Event ET IEC ER Contractor Density or the distribution 1. Review historical data to ensure 1. Discuss amongst ER, ET, and 1. Discuss with the IEC additional 1. Inform the ER and in writing; pattern of horseshoe crab, monitoring requirements and any 2. Discuss with the ET and the IEC differences are as a result of natural Contractor on the potential seagrass and intertidal soft other measures proposed by the variation or previously observed remedial actions; and propose measures to the IEC shore communities recorded seasonal differences; ET; 2. Review proposals for additional and the ER; in the impact or postconstruction monitoring are 2. Identify source(s) of impact; monitoring and any other 2. Make agreement on the measures 3. Implement the agreed measures; measures submitted by the to be implemented. significantly lower than or 3. Inform the IEC, ER and Contractor; 4. Resubmit proposals of remedial different from those recorded Contractor and advise the ER 4. Check monitoring data; actions if problem still not under in the baseline monitoring. accordingly; control: 5. Discuss additional monitoring and any 3. Supervise the implementation of other measures, with the IEC, ER and 5. Stop the relevant portion of works remedial measures. Contractor. as determined by the ER until the exceedance is abated.

Annex H3 Event and Action Plan for Soft Shore Ecological Monitoring

Annex I

Cumulative Statistics on Exceedances, Environmental Complaints, Notification of Summons and Status of Prosecutions

Table I1Cumulative Statistics on Exceedances

		Total No. recorded in this reporting period (1)	Total No. recorded since project commencement
Air Quality (1-hr TSP)	Action	0	0
	Limit	0	0
Noise	Action	0	24
	Limit	0	0
Water Quality	Action	0	0
-	Limit	0	0
Marine Ecology	Action	0	0
	Limit	0	0

Remark:

(1) Exceedances, which are not project related, are not shown in this table.

Table I2Cumulative Statistics on Complaints, Notifications of Summons and
Successful Prosecutions

Reporting Period	Cumulative Statistics										
	Complaints	Notifications of Summons	Prosecutions								
This Reporting Period (1 – 30 September 2019)	0	0	0								
Total no. received since project commencement	35	0	0								

Annex J

Monitoring Schedule for the Next Reporting Period

Tung Chung New Town Extension (East) Air Quality and Noise Monitoring Schedule (October 2019)

An Quanty and Noise Monitoring Soficulae (Soficber 2013)													
Sunday	Monday	Tuesday		Thursday	Friday	Saturday							
		1-Oct	2-Oct	3-Oct	4-Oct	5-Oct							
						Air Quality and Noise Monitoring							
6-Oct	7-Oct	8-Oct	9-Oct	10-Oct	11-Oct	12-Oct							
					Air Quality and Noise Monitoring								
13-Oct	14-Oct	15-Oct	16-Oct	17-Oct	18-Oct	19-Oct							
				Air Quality and Noise Monitoring									
20-Oct	21-Oct	22-Oct	23-Oct	24-Oct	25-Oct	26-Oct							
			Air Quality and Noise Monitoring										
27-Oct	28-Oct	29-Oct	30-Oct	31-Oct									
		Air Quality and Noise Monitoring											

Tung Chung New Town Extension (East) Impact Marine Water Quality Monitoring (WQM) Schedule (October 2019)

Sunday	Monday	Tuesday	Wednesday			Saturday
		1-Oct	2-Oct	3-Oct	4-Oct	5-Oct
			ebb tide 13:48 - 17:18 flood tide 7:52 - 11:22		ebb tide 15:24 - 18:54 flood tide 10:00 - 13:30	
6-Oct	7-Oct	8-Oct	9-Oct	10-Oct	11-Oct	12-Oct
	ebb tide 6:08 - 9:38 flood tide 14:47 - 18:17		ebb tide 8:31 - 12:01 flood tide 15:55 - 19:25		ebb tide 9:55 - 13:25 flood tide 16:40 - 20:10	
13-Oct	14-Oct	15-Oct	16-Oct	17-Oct	18-Oct	19-Oct
	ebb tide 11:29 - 14:59 flood tide 5:27 - 8:57		ebb tide 12:31 - 16:01 flood tide 6:43 - 10:13		ebb tide 13:45 - 17:15 flood tide 8:14 - 11:44	
20-Oct	21-Oct	22-Oct	23-Oct	24-Oct	25-Oct	26-Oct
	ebb tide 3:41 - 7:11 flood tide 16:12 - 19:00		ebb tide 7:00 - 9:49 flood tide 14:24 - 17:54		ebb tide 8:48 - 12:18 flood tide 15:38 - 19:08	
27-Oct	28-Oct	29-Oct	30-Oct	31-Oct		
	ebb tide 11:15 - 14:45 flood tide 5:10 - 8:40		ebb tide 12:47 - 16:17 flood tide 7:01 - 10:31			

Remark:

Pickup time and place of 1st tide: 15 min before tidal window at Sham Tseng pier Pickup time and place of 2nd tide: 15 min before tidal window at Tung Chung pier